All blog posts

RAIN RFID Is Evolving – An Industry Pioneer Looks Years Ahead

May 02, 2025

The global use of RAIN RFID is skyrocketing. Application areas are diversifying, and quality requirements are becoming more stringent. At the same time, tags are increasingly integrated directly into products rather than applied as separate labels. Industry pioneer Voyantic believes the next major step in the RFID sector is a shift toward networked, intelligent, and transparent quality management. The company’s latest product release, version 4.0 of Tagsurance® 3, is designed to support this direction.

Key Updates Propel RFID Technology Forward

The new version combines two major advancements: network connectivity and encoding functionality. According to Voyantic General Manager Jukka Voutilainen, these features make it possible to examine the entire RFID production process from a new perspective.

“The combination allows testing and encoding to take place at different stages of production, and the collected data can be integrated into a comprehensive quality management dataset”, Voutilainen explains.

Voyantic’s systems now enable precise measurement of the electrical performance of tags. The encoding feature adds a completely new dimension: verification and management of the data content. At the same time, the system has been designed to scale and connect securely to the internet, enhancing usability in large, cross-company production chains.

Three Trends Shaping the Industry

Voyantic’s development work is guided by a clear long-term vision: RAIN RFID technology has to be reliable and care-free for the end users. Voutilainen identifies three major trends that are steering the industry in the coming years.

The first trend is the integration of tags directly into products. When an RFID tag is embedded directly into the product, such as a tire or a medical syringe, it can no longer be easily replaced or tested outside the product. This means testing must occur not only before integration but possibly afterward as well. In such cases, the cost of failure can be high: a faulty tag may compromise the entire product. Quality assurance must therefore adapt more precisely to different production workflows. The modularity of Tagsurance 3 supports flexible implementation across various processes.

The second trend involves the expansion of quality expectations throughout the supply chain. Traditionally, tag quality has been enforced at chip bonding, the process step where the tag IC is attached to the antenna. It still remains the single most critical production phase. However, the end users see the quality of the tag after it has passed through various process steps, where the tag’s performance may be impacted. In addition, the supply chain often consists of multiple different parties, such as converters and service bureaus. Tagsurance 3 is designed with this in mind: it can collect and combine quality data from multiple production phases, enabling a broad and transparent view of the process.

The third trend is combining multiple data sources to ensure tag quality. Electrical performance alone is no longer sufficient— a tag may seem to work seemingly well but ends up failing prematurely in the end application. Failures like this can be identified and corrected by combining other process data with electrical performance in quality verification. Secondly, the tag also needs to contain correct and reliable information. When encoding is integrated with product data in backend systems, it becomes possible to verify tag authenticity or link it precisely to a specific item or batch. This opens new opportunities in sectors where traceability and data security are essential.

“Tagsurance 3 is built to support these industry shifts. It’s not just a testing device—it is a system that integrates quality, data, and production management in a new way”,  Voutilainen says.

The Need for Testing Will Not Decrease—Quite the Opposite

While RAIN RFID tags are already widely used in retail, emerging applications such as logistics, pharmaceuticals, and food products are imposing new requirements on the technology. In these areas, the tolerance for quality issues is minimal, and the importance of quality assurance continues to grow.

“The need for testing will certainly not decrease in the future”, Voutilainen affirms.

According to him, technological development will increasingly be shaped by customer needs and the specific requirements of different industries. The company continues to develop its products in close collaboration with customers and actively contributes to the creation of new industry standards.

“Testing systems must evolve in step with applications and demands. Our role is to be at the forefront of that progress”, Voutilainen concludes.

All blog posts
All blog posts

Voyantic introduces reliable high-speed encoding into RAIN RFID converting and other machines with the Tagsurance® 3 system

Apr 11, 2025

Voyantic, a global leader in RFID testing solutions, is proud to announce the launch of the new encoding feature for Tagsurance 3 quality testing system. The latest software release enables encoding and quality control of RAIN RFID labels in high-speed production machines with a single system. 

As the demand for RAIN RFID labels is expected to grow exponentially, with billions produced annually, manufacturers need integrated, high-speed systems. The Tagsurance 3 system with encoding feature meets this demand, allowing seamless integration into production lines and eliminating the need for external encoding solutions. The Tagsurance 3 system is modular and scalable and can easily fit into various machine types. The user-friendly, browser-based operating UI helps with adoption at sites.

“At Voyantic, we are committed to delivering cutting-edge solutions that help our customers excel in RFID,” said Jukka Voutilainen, Voyantic’s General Manager. “This upgrade significantly enhances the Tagsurance 3 system’s capabilities, making it a powerful all-in-one solution for RAIN RFID inlay and label production.”

Uncompromised speed and reliability

The Tagsurance 3 system maintains high throughput without compromising the speed and efficiency of the production process. It supports encoding in high-speed machines and can even reach lane speeds for converting machines.

Additionally, the system’s reliability is paramount. Non-encoded, incorrectly encoded, or double-coded labels can create significant challenges for RAIN RFID users. To address this, the Tagsurance 3 system is designed for continuous, error-free operation during extended production runs, ensuring the highest reliability standard in large-volume manufacturing. 

Main specifications:

  • One encoding station per lane is supported
  • “BlockWrite” data to any writeable tag memory and lock the tag memories (Reserved, EPC, User)
  • Supported ISO 18000-63 (EPC Gen2v3) commands
    • BlockWrite
    • Lock
    • Read
  • 1-12 lanes
  • Lock the selected memories permanently
  • Verify the data is correctly encoded (Read test with verification)

The full specification is available in Tagsurance 3 product catalog.

The commercial release of the Tagsurance 3 encoding feature, available starting 10th of April, will be offered as a separate license on top of the existing Tagsurance 3 system. A hardware version 4.x is required to utilize this feature.

Tagsurance 3 hardware.

Save the date! We’re organizing a Tagsurance 3 encoding live demo on Wednesday, May 21, at 5 pm CEST / 10 am EDT. Register for the live webinar from here!

All blog posts
All blog posts

Tagsurance® 3 Online Connectivity Improves Usability and Maintenance

Mar 20, 2025

Voyantic recently launched a new version of the Tagsurance 3 system, an inline quality testing system for RFID tag production. With this update, we recommend that customers using the latest version (4.x) keep their systems always connected online. On the other hand, older versions (3.x) should still stay offline. But why the switch? And what benefits come with this new online connectivity?

Let’s dive in!

A screenshot of Tagsurance 3 Version 4.0 user interface.
A screenshot of Tagsurance 3 Version 4.x software user interface.

Cloud-based architecture enables future-proof quality management

With the new version, the Tagsurance 3 system’s architecture has been completely revamped under the hood. The Voyantic team has carefully designed this upgrade with the future and information security in mind. This release marks an important milestone, enabling safe network connectivity for the test system. Voyantic designs its systems using secure development best practices, and regular third-party audits ensure any identified issues are promptly addressed. 

The Tagsurance 3 Version 4.x with online connectivity paves the way for future possibilities, including encoding operations through the same setup. Enabling encoding will only require purchasing a software license, with no need for additional hardware upgrades.

Simpler, faster, and more efficient—whether it’s for daily use or maintenance tasks

Connecting the system to the internet is safe and recommended for unlocking a range of new features. Today, the concrete updates are most noticeable in the new browser-based user interface, which administrators and operators can access from any computer. Let’s examine the latest features designed to ease the system’s use.

1. Update software directly in the user interface

Gone are the days of downloading software update packages separately from voyantic.com and manually performing updates. With this new feature, admins can download and install the latest software versions directly from the user interface via the admin panel—as long as the system is connected to the internet. This ensures your system stays effortlessly updated with the latest features and improvements.

A screenshot from Tagsurance 3 4.x software showing what the releases page looks like.
Updating your Tagsurance 3 Version 4.x software has been made easy.

2. Simplified licensing

When your Tagsurance 3 version 4.x system is connected to the internet, it automatically connects to Voyantic’s license server and fetches the license information. Admin users can see all the essential details in the browser-based admin panel, including how long the license is valid, the number of lanes, and Tagsurance stations. It’s all there in one place, making it easy to manage your licensing.

3. Enhanced support

While we hope you don’t need to use this feature, we’ve significantly improved support for the new version. Suppose the system is connected to the internet, and you run into an issue. In that case, it’s now possible to download and send diagnostic files directly to the Voyantic support team through the admin panel. This helps speed up troubleshooting and resolution by providing our team with more accurate data with which to work. Ultimately, this reduces system downtime and takes the headache out of maintenance.

In summary

In the future, online connectivity of the new Tagsurance 3 version will open new business opportunities with the comprehensive management of quality data. Today, online connectivity improves usability and maintenance. It simplifies tasks, adds more features to the user interface, and provides a more efficient way to share information directly with Voyantic.

That said, online connectivity is still optional. Version 4.x systems can also operate offline like the 3.x systems. If you prefer to stay offline, you can still upload software releases and license files from a local computer through the admin panel.

Watch the recording below, where our Senior Product Manager Anirudh Wali demonstrates how the updated user interface and new features work in practice.

All blog posts
All blog posts

Presenting the New Snoop Pro 2.0

Mar 05, 2025

We continuously seek to improve our products to answer your needs, like making your job easier with user-friendly test systems or improving testing quality. This time, we made some nice improvements to Snoop Pro, one of the components used in the Tagsurance 3 system. The Snoop Pro 2.0 has:

  • Improved unit-to-unit RF performance variance
  • Integrated strobe feature
  • Smaller size and better usability

The improvements were made with backward compatibility in mind to make Snoop Pro 2.0 almost a drop-in replacement for Snoop Pro 1.x, which means:

  • RF backward compatibility: when testing tags/inlays, the test results with Snoop Pro 2.0 are within the test results variance of Snoop Pro 1.x
  • Mechanical backward compatibility: Snoop Pro 2.0 has the machine integration attachment holes at the same positions as Snoop Pro 1.x, and also the same shielding plates can be used

Let’s check it out.

Improved RF performance variation with RF backward compatibility

I’m starting with the RF performance because I just love RF. A nice new feature for the Snoop Pro 2.0 is the improved variance, making the produced units more uniform in RF performance. This means that if you test one tag with multiple different Snoop Pro 2.0, the results are very similar.

A line graph with green and black text

Description automatically generated
Illustrated example of the RF backwards performance.

Why is this so nice? I’m so glad I asked. It’s nice because if you want to use identical recipes for different production lines or even factories, the Snoop variance does not prevent doing that. So, better testing quality for your products. However, keep in mind that Snoop is only one of the components in the system; other things, such as the environment near the Snoop or cabling, might still have too much effect.

One of the most important requirements was the RF backwards compatibility so one can replace a Snoop Pro 1.x with the Snoop Pro 2.0 and be done with it. Our definition of RF backwards compatibility is as follows:

  • With the Snoop Pro 2.0, measured results are within the variance of Snoop Pro 1.x results OR within ±1.0 dB from the center of the Snoop Pro 1.x result envelope average

The difficult part is that the Snoop is always used with a tag/inlay on top of it and together they form a complex structure where every part plays a role. Since all tags/inlays are different and are affecting the Snoop differently, an excessive amount of measurements was performed to make sure we have covered most of the imaginable situations. Especially large tag models couple with the Snoop strongly and have an effect on the performance. Bah, physics and its precious laws.

Voyantic offers different kind of extensions for Snoops and those are compatible with the Snoop Pro 2.0. However, for the extensions there is no backwards compatibility in RF performance even though the results are close.

Integrated strobe feature

The Snoop Pro 2.0 has a built-in strobe functionality that can be turned on/off with a switch. White LEDs illuminate the trigger position (the moment when the testing/encoding starts), and red LEDs show tags/inlays that are failing the tests.

With the strobe light coming from below the material under test, the strobe is more effective than when the light comes from above. In a Tagsurance 3 system, the Snoop strobe shares a station connector with a TSU, so there’s no need to configure a new station to get it working. The Snoop Pro 2.0 can also be used without connecting the strobe cable; it does not affect the RF performance. The new RJ45 connector was added for the strobe functionality (don’t be fooled by the connector; no ethernet traffic there).

New size, looks, and usability

The Snoop Pro 2.0 no longer wears green; it now has a black-and-white appearance and a slightly reduced size. The new color was picked because of the integrated strobe functionality; white reflects the most light, which is essential for the strobe.

Snoop Pro 2.0 appearance.

With a careful redesign, we could replace the large external RF splitter and the two blue RF cables, making the size of the Snoop more compact. This helps a bit when trying to fit many Snoops in a multilane system where the space is limited.

The magnets were also renewed so less force is needed to change the shielding plate and you don’t not accidentally rip off the copper gaskets during the changing. Less hassle is always nice.

Conclusion

With the backwards compatibility, you can easily integrate the new Snoop Pro 2.0 to your testing systems. With the strobe integrated into the Snoop it is easy to use and doesn’t require additional configuration in the Tagsurance 3 recipe. The improved unit-to-unit variance allows you to more easily use identical recipes between lanes. All with the new Snoop Pro 2.0.

All blog posts
All blog posts

Voyantic Launches a New Version of Tagsurance® 3 System With Cloud-Based Features

Feb 28, 2025

Voyantic announces the launch of a new version of Tagsurance 3 system, an inline quality testing system for RFID tag production. The launch of Tagsurance 3 Version 4.x marks a significant upgrade to the previous version 3.x systems with exciting new capabilities and enhanced usability. This release introduces cloud-based features and lays the groundwork for future functionalities, including encoding operations using the same setup. 

The new Tagsurance 3 Version 4.x architecture is designed with the future in mind, unlocking powerful cloud-enabled features. The online connectivity streamlines maintenance work by enabling effortless software updates, simplified license renewals, and enhanced support: diagnostic data can be shared directly with the Voyantic support team for faster troubleshooting and minimized downtime. With this version, Voyantic recommends keeping Tagsurance 3 systems always online to fully leverage the benefits and ensure maximum system efficiency. 

Tagsurance 3 Version 4.x also introduces a new browser-based user interface, allowing operators to access the system conveniently from any computer. This eliminates the need for certain peripherals and allows users to connect to the system via a web browser for an intuitive and modernized user experience.

The update also provides a more compact hardware setup, reducing the footprint of controller racks. The new version uses the upgraded Lane Controller 2.0 and the new Server Panel.

Tagsurance 3 Version 4.0 offers backward-compatible APIs that ensure seamless integration with existing systems, safeguarding previous investments and reducing implementation time. Recipes created in previous Tagsurance 3 Version 3.x systems will also continue to work seamlessly, enabling a smooth transition without disrupting existing workflows.

Contact sales@voyantic.com for more information about upgrading your existing Tagsurance 3 system or starting your journey with Voyantic towards improved tag quality.

All blog posts
All blog posts

RAIN RFID: A Decade of Growth and the Path Forward

Jan 20, 2025

It has been almost four years since I wrote about the possibilities for the RFID industry in this decade. I figured that now would be a good time to review whether that jabbering was making sense and see how the industry has evolved during these past years. This text focuses on RAIN RFID.

The five megatrends I previously estimated that would be important drivers for the RFID industry were:

  • The development of science and technology
  • Overconsumption of resources
  • The amount of waste increases
  • Population growth and the aging of the population
  • The development of healthcare

The tag manufacturing volumes are a clear indicator of the industry moving forward. If the >20 percent annual growth for the RAIN tag manufacturing is correct, then over 50 billion were manufactured in the year 2024 and ~150 billion RAIN tags will be manufactured when we get to 2030. Not too shabby. At some point, the growth will inevitably get slower, but the market is still young and full of potential, so we can still expect quite impressive growth numbers for the industry.

An exited fellow with wristwatches on both hands pointing happily at skyrocketing sales numbers.
An excited fellow with wristwatches on both hands pointing happily at skyrocketing sales numbers.

As for market penetration, retail is still the leader when it comes to volume, but pretty much every relevant sector is expected to have >20 % CAGR in the coming years. The pharmaceutical/healthcare is also steadily growing and that is one of the sectors I listed as a possible driver for the RFID industry. Although the sector is growing, I did most likely overestimate the effect that the population aging, and counterfeit medicine have on the RFID industry.

Sustainability has much more impact on the volumes than the population aging. The overconsumption of resources is one of my favourite topics. I hate wasting pretty much anything: food, clothes, time, you name it. In this aspect, most companies are no different and that can be interpreted from the answers for how the customers see the value they get for buying RFID systems. Sustainability continues to be one of the biggest drivers for the RFID industry. Waste is not wanted.

Latest developments in the RFID industry

Okay, so they’re selling a lot of tags and estimate that to continue to the foreseeable future. That is no excuse to rest on your laurels; the industry needs to evolve and look for new opportunities. In that aspect, some interesting things are now on the table.

The EU is well known for its obsession with regulating every tiny little thing, and the RFID industry should take advantage of that. The upcoming Digital Product Passport (DPP) is an opportunity for the RFID industry, but it must be done right. For DPP, the value lies in sustainability. One of the things I was talking about in the previous blog was that RFID is not yet present in every step of a product life cycle, and DPP can add to it.

Thinking back on the product lifecycle and how RFID does not cover it fully, the part missing is the end user part of the life cycle. With only a couple hundred thousand handheld RAIN RFID readers sold yearly, it would be crazy to expect everyone to soon walk around with a reader in their pocket, right? Maybe not. Everyone (well, almost everyone) already carries a smartphone, and if that thing could be used as a RAIN RFID reader, there could be some nice opportunities to find ways to add value to that.

An empowered end user realizes she now possesses the capability to read RAIN RFID tags with her smartphone.
An empowered end user realizes she now possesses the capability to read RAIN RFID tags with her smartphone.

These development steps are drivers for circular economy and tags being embedded into items, not just separate labels that can be cut off. In some product categories, like car tires, some items are already tagged, so a Proof of Concept has already been done. Tagging items will bring some demands for the tag designs and testing/encoding:

  • Durability: If the tags should be functional throughout the tagged item life cycle, durability can be a challenge.
  • Sustainability: When a tag is part of an item, how can it be recycled? Some development steps have been taken; for example, plastic-free tags are already available.
  • Chip design: Data retention is one important thing if tags are supposed to be working for years, first throughout the supply chain and then in the hands of end users. Some applications might require more memory, of course depending on what information is needed to be stored in the tag memory.
  • Testing/Encoding Tagged items: It might be hard to use the same manufacturing lines for inlays and tagged items; investments for new systems are needed.

Summoning dark clouds

Last time, I didn’t talk much about possible threats to the RFID industry; it was all about the possibilities and good stuff. Let’s try something different this time. What kind of threats is the industry facing? I like investing in stocks, and sometimes, I try to come up with business-breaking scenarios when assessing the risk profile. Which kind of black swans could surprise and really hurt the RFID industry? I thought of three different scenarios:

  • Other technologies replacing RFID: Some other technology or combination of technologies could solve the same problems as RFID. How do we battle that? It all lies in the value provided by the RFID technology, that value must be higher than that of the technologies competing with it. The industry must evolve to answer future needs; standing still is hardly the winning strategy.
  • Radio spectrum reallocation: It’s not enough to compete against technologies trying to solve the same problems as RFID; there is a limited space in the radio spectrum, and there are other users who would love to get it. Allocating the current RFID frequencies for some totally different use would hurt a lot. Why would this ever happen? The same thing applies here as in the previous one: providing more value than the competitors is the key.
  • Security and privacy: The more the markets are flooded with RFID tags and data (this is wanted), the more opportunities there are for mischief (this is unwanted). Moving forward and evolving must not happen without taking this seriously. Fortunately, many other technologies have faced similar issues, and there is no need to reinvent the wheel. Then why is this important? Because if this goes wrong even once, coming back from that and gaining customer trust won’t be easy.
Black swan destroying RFID technology, represented by a warehouse.
Black swan destroying RFID technology, represented by a warehouse.

Grim, that’s for sure. This is not to say that these scenarios are likely to happen, but work must be done to prevent them from happening. Maybe they’re more like grey swans, not really black ones?

All in all, I think the future is looking bright for the RFID industry, and based on the growth estimates by the RFID industry players, others do, too. The growth drivers are there; now, the industry just needs to deliver. At the same time, taking an active part in the latest technological developments and different kinds of regulatory matters should ensure that RFID stays proactively on top of things.

All blog posts
All blog posts

Webinar Series for Barcode Pros – Getting Started with RFID Labels

Feb 01, 2022

Last year, we teamed up with TSC Printronix Auto ID and started a webinar series designed for barcode professionals, who are considering expanding their offering to RAIN RFID labels, or who already are at the beginning of that journey. With TSC Printronix Auto ID we saw the need for education as more and more barcode label customers are looking for RFID solutions. 

In the first webinar, What a barcode professional needs to know about RAIN RFID Label and Tag Data, we started from the basics: what are the key aspects of RAIN RFID technology and data, how does RAIN RFID actually work, what are the system components, and most importantly, where can you find more information. 

The second part of the webinar series, What a Barcode Professional Needs to Know about the RAIN RFID Encoding Processes, focused on the practicalities of the RAIN RFID encoding process, equipment, and alternatives. 

In the third webinar, What a Barcode professional needs to know about RAIN RFID label selection and sourcing, scheduled for February 10th, we will cover the most important considerations related to label selection and sourcing process including label specifications, supplier selection, delivery format, handling, and other issues.

Here are my main takeaways from the first two webinars in the series.

Key Takeaways from Part 1 

It is crucial to understand filtering in the context of RFID systems

The nature of RF signals means that they can go through walls and various other materials. A RAIN RFID reader can read a large number of tags simultaneously and without a line of sight, which is, in comparison, required for reading barcodes. For example, when you are inventorying tagged items in storage, your system could be reading tags behind a wall that should not be included in your inventory. Setting up tag filtering correctly ensures that your application works accurately, and that requires following proper data encoding processes. 

There are 9 RFID tags on the wall, but the reader found 54 tags.

There is no “one size fits for all” RAIN tag

What do you need to know about RAIN RFID tags when looking for a tag for your customer? The difference between a barcode label and an RFID label is that the RFID label includes an IC (microchip) and an antenna. Together the IC and the antenna make up an RFID inlay. There are lots of different IC models out there and the type of IC defines what kind of and how much data can be encoded in the tag. The antenna model defines how far the label can be read. Knowing your solution requirements, physical factors such as the label size and item materials, and use cases and data requirements are necessary for finding the best tag for your solution.

Do not use a proprietary numbering system

Keeping the importance of filtering in mind, it is crucial to understand the basics of RAIN RFID encoding systems, i.e., how you are putting data into a tag. There are three data standard families available for RAIN RFID tag encoding

Following one of the established data standards ensures there won’t be issues with tag filtering (and application errors) along the road.

The fourth option is to use your own proprietary encoding systems – Please do not do it! Or if you do, you need to “wrap” your system within the ISO standard or the RAIN numbering system.

Selecting the data standard to use often depends on your customer or the industry you are operating in. Some customers may mandate that you use a specific standard, and many industries have a mandated or de-facto standard in use to ensure interoperability.

Above are my key learnings of Part 1, but many more topics and details were discussed. Watch the webinar to learn more about each of the data standard families, including the structure of the different numbering systems and example use cases, as well as the basics of data security. Webinar part two dives deeper into the standard selection process and the specific advantages of the different standards.

Key Takeaways from Part 2

Label Manufacturing Process

The label manufacturing process includes three steps. In the first step, the IC is attached to the antenna, creating an inlay. In the second step, the inlays are converted in a common backing material called a liner, creating a blank label. In the third step, data is printed on and encoded into the label, creating a finished label.

While the process itself is simple, the manufacturing machines are quite complex. Watch the webinar to learn more ›

Encoding Equipment Types and Process

The suitable type of encoding equipment depends on the volume of tags that need to be encoded. The more sophisticated machines that can process high volumes at high speed naturally come with a higher cost.

An RFID reader can be used as an encoder but it is not an efficient permanent solution.

An RFID printer is purpose-built for encoding and is best suitable for small rolls and batches. They can be affordable and process up to some thousands of labels per hour.

High throughput personalization machines can take in larger rolls and process up to one hundred thousand tags per hour, but they also come with a higher cost.

And finally, encoding can also be integrated into product production or packaging lines.

Watch the webinar recording to dive deeper into the IC selection factors, encoding process steps, RAIN tag memory details, as well as tag locking and passwords – ensuring the right data is encoded in the right way.

The Personalization Process

The personalization process includes both printing data on the label and encoding the tags. The printed data can be the same data that’s in the RFID tag or include additional information. 

High throughput personalization lines often process labels in successive stations. Combining the print and encoding in a high-speed personalization process requires accurate triggering for all the steps and making sure the stations match the process flow.

An example of personalization stations in a high throughput personalization process.

Using an RFID printer for personalization is a good option for smaller-scale projects. An RFID printer prints the barcode and other designed details on the label as well as encodes and verifies the RAIN tag data.

Part 3: RAIN RFID Tag Selection and Sourcing

Learn the most important aspects of label selection and sourcing, including label specifications, supplier selection, and delivery format.

All blog posts
All blog posts

Future-proofing RAIN Connectivity

Mar 14, 2019

中文版 Chinese version

The RAIN RFID market has been growing nicely throughout the latest years. The latest news is that last year a total of 15.4 billion RAIN ICs were sold – and we are nicely on track for more than 20 billion in 2020. At the same time, the market penetration is still very low. According to IdTechEx, in the most successful market segment, retail, we are at around 10% of the total accessible market, and with other segments, such as Industry 4.0, aviation, and food it is even lower. So, there is plenty of room to grow.

We can already see 100 billion tags a year in the horizon. I don’t know if it will be in 8 or 10 years, but we are getting there. Then maybe another ten more years, and we will be at 1 trillion. However, several things in our thinking will need to change for that to happen.

I can see three obstacles that we need to overcome.

  1. We need to think about what happens when applications overlap. We are already starting to reach the situation where tags from one application are entering the read zones of other applications, and it is causing problems.
  2. We need to prepare for people intentionally messing with the applications. This is something that has not been a big problem for now, but it will increase as RAIN RFID spreads wider.
  3. We need to stop thinking in terms of tags and start thinking about RFID enabled items. There will not always be a separate tag that is attached to a product.

Since the industry has accepted that source tagging is the way to go, there needs to be a way for the party that owns the RAIN system to specify to the party that tags the product, how to tag.

For that I propose the Tagging Specification.

The specification is a common language between the parties, and it could also work as a checklist to make sure that all aspects have been considered. But what should be in a tagging specification? This is my proposal:

Geographic Region

In which geographic regions does the tagged item need to be identifiable? This could be for example ETSI, FCC, or global; and this choice will affect the tuning of the tag. With the upcoming upper ETSI band we have more and more countries working around 915 MHz.

Tag Numbering Scheme

How do we encode the tags? This is one of the areas where we need to look into the future. When there are more and more tags out there, the applications start to overlap.

For example, in a running race we have tags in the bibs of the runners provided by the timing system provider. But we also have tags integrated in some of the garments or accessories of the runners, courtesy of the sports retailer. When the runners pass the RFID readers, there is a limited amount of time to detect each runner – or even get several readings for reliable timing – if there are tags around that don’t belong to that application. Juho’s blog post about tag flooding talks more about this. The radio protocol provides ways to ignore the irrelevant tags, but it takes more time, and it requires that all parties think about the numbering.

Security

One action that is closely related to encoding the tag data, is securing it. At the moment, RAIN RFID is not everywhere, and most RAIN RFID readers are professional equipment. But, we are already close to the time when different electronics enthusiasts get their hands on RAIN reader modules. It may take some more time, but at some point we will have more RAIN readers integrated in mobile phones. And when there is an opportunity, there will be sabotage and people trying to get gains for themselves by affecting the RAIN RFID systems.

Of course, different applications have different security needs. There are still surprisingly many applications out there, where there is zero security – the EPC is encoded and that’s it. Most applications lock the EPC memory and passwords. That may work for a while, but in the long run, you need a way to manage passwords, and Nedap’s Danny Haak’s proposal for managing RAIN passwords could be a solution. Finally, in some application there might be a need for authentication functionalities.

Tagging Method

There is a fundamental shift in the industry, where more and more tags are integrated either into the packaging or into the products themselves, be it a running backpack or a tire. Thus the specification is no longer about the tag itself but about the RAIN-enabled product – or maybe a smart product. So, another line in the tagging specification would be tagging method. Is the tag a sticker applied to the product? Is it a hang tag? Is the tag applied to the package? Or is it integrated somewhere inside the product? Perhaps it is up to the supplier to decide? This all depends on whether there is a use for the tag after the point of sale; for example for product returns, warranty etc.

Tag Size

Tag size is often the first specification that comes up. Usually we want the tag to be as small as possible. But there is a compromise between the bandwidth of the tag which affects the geographic range; its performance – how far it can be read from; and size. You can choose any two, but the third one will be a compromise.

Tagged Item Performance

Radio performance matters as well. But it is not the performance of the tag, it is the performance of the entire RAIN-enabled product. And that’s where inlay lists widely used in retail will be insufficient. Still several retailers maintain lists of inlays that are allowed for products sold in their stores. And Auburn University is certifying tags for different product categories. That is an ok starting point, if you want to do hang tagging. But not everyone does.

Determining radio performance for RAIN-enabled products is somewhat more difficult than for just inlays or tags; and the testing methodology should be thought out for each industry. The TIPP methodology was developed for retail several years ago, and now there is an ISO standard family coming out for RFID in tires. The application determines whether in the typical reading scenario there are multiple tags close to each other and from which directions the products need to be identifiable. The reader type used in the application, on the other hand, may determine the requirements for sensitivity and backscatter strength.

It is extremely important that the tagging specification includes a clear verifiable performance requirement – and that it is vendor agnostic. That is the only way that the industry can improve and innovate.

Example of a tagging specification; what elements a specification should contain.

The tagging specification is my proposal for overcoming the obstacles we are facing – and this is my idea about what should be in the specification. Let us hear what do you think should be there!

All blog posts
All blog posts

Zwei Faktoren die verhindern, dass Anwender von RFID RAIN Systemen von den Verfgbarkeit der hheren ETSI-Frequenzen profitieren

Dec 06, 2018

Im Januar 2016 hatte ich einen Blog darüber geschrieben, wie RAIN RFID-Unternehmen ihre Interessen vor allem in Europa vertreten sollten. Die Regulierung der Frequenzzuteilung schreitet langsam voran und jetzt, zweieinhalb Jahre später, ist es mir eine große Freude festzustellen, dass die bisherigen Ergebnisse beeindruckend sind. Lassen Sie uns einen Blick darauf werfen, wie die Nutzung des höheren ETSI-Frequenzbandes möglicherweise die Art und Weise der Optimierung des Tagging (Markierung von Objekten mittels RFID RAIN UHF Transpondern) verändert. Sicherlich werden sich diese Änderungen nicht unmittelbar bemerkbar machen. Mein Beitrag hebt zwei Faktoren hervor die derzeit einen unmittelbaren Vorteil dieser neuen Verordnung für den Anwender behindern.

Wie Tags traditionell abgestimmt werden

Im Jahr 2005 wurde das RAIN-Tagging in Europa weitgehend für das Frequenzband 866-868 MHz weitgehend optimiert. Eine solche Kennzeichnung bot in den USA nur eine sehr begrenzte oder nicht vorhandene Lesbarkeit, dies führte schnell zur Entstehung globaler Tag-Designs.

Während die weltweite (globale) Lesbarkeit im Prinzip keine so große technische Herausforderung darstellt, hat dies die Entwickler von Transponder (Tag) Antennen gezwungen, Einbußen bei der Sensitivität der Transponder in Kauf zu nehmen. Bei der Entwicklung von RFID Transpondern für die Montage auf Metall verlangt die globale Lesbarkeit in den Abmessungen deutlich größere Transpondern im Vergleich zu den winzigen Designs für einen stark eingeschränkten Frequenzbereich (ETSI 868 MHz oder FCC 915 MHz). Dies führt nicht nur zu weiteren technischen Herausforderungen sondern stellt auch einen zusätzlichen Preisfaktor dar.

Die Europäische Kommission genehmigt 4W für RFID-Lesegeräte bei 916-919 MHz

Schließlich heißt es im lang erwarteten Durchführungsbeschluss [EU] 2018/1538 der Europäischen Kommission vom 11. Oktober 2018, dass die Mitgliedstaaten bis zum 1. Februar 2019 drei Kanäle innerhalb des Frequenzbandes 916,1 -918,9 MHz für RFID-Lesegeräte öffnen sollten. Damit wird die Norm ETSI EN 302 208 V3.1.0 ergänzt, die ebenfalls ein RFID-Band zwischen 915 und 921 MHz definiert, allerdings mit eingeschränktem Umsetzungsstatus innerhalb der EU und der CEPT-Länder.

Während all dies nach Jahren der technischen Argumentation und Lobbyarbeit nach einem ausgezeichnetem Ergebnis klingt, werden die Hersteller von Lesegeräten vor neue technische Herausforderungen gestellt. Jedoch wie wird sich diese Entscheidung langfristig auf die RFID-Transponder auswirken?

Der optimale Bereich für Tagging auf globaler Ebene

Wie beabsichtigt, wird mit dem oberen ETSI-Band ein global harmonisiertes Frequenzband eingeführt, in dem alle geografischen Regionen verfügbare Kanäle für RFID-Leser haben!

Auch in Europa bietet sich damit die Möglichkeit, das Transponder-Design speziell für den oberen Frequenzbereich zu optimieren. In Anwendungen, in denen die RFID RAIN Lesegeräte (Reader) viel Zeit haben eine Bestandsaufnahme (Inventory) aller Transponder im Lesefeld durchzuführen und durch alle ETSI-Frequenzen zu scannen, sollte eine solcherart eingeschränkte Reaktion von Transpondern, die nur bei den oberen ETSI-Frequenzen wirklich empfindlich sind, kein Problem darstellen. Dies setzt natürlich voraus, dass die ETSI-Lesegeräte in Zukunft sowohl das traditionelle Frequenzband 866-868 MHz als auch das neue obere 916-919 MHz Frequenzband nutzen werden.

Unbekannter Faktor Nr.1: Umsetzungszeitplan in Mitteleuropa

Derzeit nutzt die GSM-R(ailway) das 918-921 MHz Frequenzband in Deutschland, Österreich und Frankreich auf der Grundlage nationalen Rechts gemäß den Frequenz Verordnungen der Internationalen Fernmeldeunion (International Telecommunication Union, kurz: ITU). Leider überlappt sich dieses Frequenzband und das für Europa neue obere ETSI RFID-Band. Die militärische Nutzung desselben Frequenzbereiches in Deutschland ist ein weiteres Fragezeichen und möglicherweise auch ein Hindernis. Die Europäische Kommission hat dieses Problem erkannt und gibt den Mitgliedstaaten die Möglichkeit, die Nutzung von GSM-R und RFID auf der Grundlage von Geographie, spezifischer Installation, Betriebsanforderungen oder ähnlichem zu koordinieren.

Was bedeutet dies nun in der Praxis? Schwer zu sagen. In Deutschland, Österreich oder Frankreich sind noch keine RFID-Umsetzungsrichtlinien veröffentlicht, also ist es von Vorteil die GS1-Übersicht der Regularien für Updates im Auge zu behalten. Die gute Nachricht ist, dass sich das „Future Railway Mobile Communication System“ (FRMCS) nicht mehr mit RFID überschneiden sollte. Die schlechte Nachricht ist, dass noch nicht bekannt ist, wann die Bahnen ein solches System entwickeln oder einsetzen. Das FRMCS-Projekt ist erst seit 2012 im Gange…. Ich persönlich erwarte, dass der Umsetzungsplan in Mitteleuropa bis zur zweiten Jahreshälfte 2019 weiter an Klarheit gewinnt.

Unbekannter Faktor Nr.2: Auswirkung der Leserempfindlichkeit

Der Lesebereich ist oft mehr eine Abschätzung als eine Tatsache, aber die Sensitivität des Lesegeräts ist in der Tat bereits in vielen Anwendungen ein limitierender Faktor. Ein gutes Beispiel ist die Zeitmessung von Marathonläufen. Herr Nikias Klohr von der race result AG hat dieses Thema in seinen exzellenten Präsentationen bei der Konferenz RFID Tomorrow und dem RAIN Face-to-Face-Meeting in Wien 2018 wiederholt angesprochen.

Wir alle haben in den letzten 15 Jahren gesehen, wie sich die erhöhte IC-Empfindlichkeit der Tags zur Entwicklung von Transpondern mit geringeren Abmessungen und nicht zu extrem langen >20 Meter-Lesereichweiten geführt hat. Wenn sich meine Vorhersage zur Optimierung des Tag-Designs für das 902-928 MHz-Band als richtig erweisen sollte, dann werden sich die Abmessungen und Kosten der Transponder weiter verringern.

Bis zum Jahr 2021 könnte die Stärke des rückgestrahlten Signals (Backscatter) von Miniatur-RAIN-Transpondern auf unter -90 dBm bis hinunter zu -100 dBm fallen. Die aktuelle Leserinfrastruktur wird solche geringen Transponder-Signale nicht so einfach interpretieren können. Daher müssen möglicherweise immer noch Transponder in den Abmessungen größer als notwendig verbunden mit höheren Kosten verwendet werden. Aus diesem Grund wird langfristig eine neue Gattung von Lesegeräten und eine Infrastruktur mit verbesserten Lesefähigkeiten benötigt, um die Gesamtkosten der RAIN RFID-Technologie weiter zu senken.

Fazit: Die Arbeit geht weiter

Wie schätzen Sie die Bedeutung der höheren ETSI-Frequenz ein? Haben Sie Einblicke in die regionalen Regulierungsdebatten in Deutschland oder Frankreich? Ich würde mich über einen Austausch zum Thema sehr freuen! Kontaktieren Sie uns dazu gerne.

All blog posts
All blog posts

Two Factors that Currently Prevent RAIN RFID End Users from Benefiting of the Upper ETSI Band

Nov 23, 2018

中文版 Chinese version

In January 2016 I wrote a blog about how RAIN RFID companies should defend their interests especially in Europe. Frequency regulation moves forward slowly, and now 2,5 years later it gives me great pleasure to conclude that the results so far are rather impressive. Let’s have a look at how the upper ETSI band potentially changes the way tagging is optimized. Surely the change is not immediate, and my story further highlights two factors that currently prevent end users from benefiting from this new regulation.

How Tags Are Traditionally Tuned

In 2005 RAIN tagging in Europe was largely optimized for the 866-868 MHz frequency band. Such tagging provided only very limited or non-existent readability in US, which quickly lead to emergence of global tag designs.

While global readability has not been a major technical challenge, it has forced antenna designers to sacrifice some of tag’s sensitivity. On the on-metal tag side global readability leads to significantly larger sized tags compared with the tiny one-band designs, which is both an inconvenience and a price factor.

The European Commission Permits 4W for RFID Readers at 916-919 MHz

Finally, the long-awaited COMMISSION IMPLEMENTING DECISION [EU] 2018/1538 dated 11th October 2018 says that member states should open three channels within the 916,1 -918,9 MHz frequency band for RFID readers by 1st February 2019. This comes on top of the ETSI EN 302 208 V3.1.0 standard which also defines a RFID band between 915 and 921 MHz, although with limited implementation status within the EU and CEPT countries.

While all this sounds like a fantastic outcome after years of technical argumentation and lobbying, a new variety of technical challenges are introduced for reader manufacturers. However, what will be the long term impact of this decision on the RFID tagging side?

Global Sweet Spot for Tagging

As intended, the upper ETSI band introduces a global harmonized frequency band, where all geographic regions have available channels for RFID readers!

Also in Europe this introduces a possibility to optimize tag designs specifically for the upper frequency range. In applications where readers have plenty of time to conduct inventory and scan through all the ETSI frequencies, such limited response from tags sensitive only at the upper ETSI frequencies should not be a problem. Naturally this assumes that in the future the ETSI readers will utilize both the traditional 866-868 MHz and the new upper 916-919 MHz frequency band.

Unknown Factor #1: Implementation Schedule in Middle-Europe

Currently the GSM-R(ailway) is using the 918-921 MHz band in Germany, Austria and France based on National Law in accordance with the ITU Radio Regulations. Unfortunately this band overlaps with the upper ETSI RFID band. The military usage of the same band in Germany is another question mark, and even a roadblock. The Commission recognizes the situation, and gives member states the possibility to coordinate the use of GSM-R and RFID based on geography, specific installation, operating requirements or something else.

What does this mean in practice? I actually do not know. No RFID implementation guidelines are yet published in Germany, Austria or France, but it’s good to keep an eye on the: GS1 regulatory overview for updates. Good news is that the Future Railway Mobile Communication System (FRMCS) should not overlap with RFID anymore. Bad news is that it’s now known when the railways will have such system designed or deployed – the FRMCS project has only been active since 2012… I personally anticipate that implementation schedule in Middle-Europe gains further clarity by second half of 2019.

Unknown Factor #2: Impact of Reader Sensitivity

The read range is often more an opinion than a fact, but the sensitivity of the reader is indeed already a limiting factor in many applications. An example is marathon race timing, and Mr. Nikias Klohr of race result AG has repeatedly raised this issue in his excellent presentations at the RFID Tomorrow and RAIN face-to-face meeting in Vienna 2018.

We all have seen over the past 15 years how the increased tag IC sensitivity has translated into smaller footprint tags rather than to ultra long >20 meter read ranges. If my prediction of tag design optimization for the 902-928 MHz band is correct, then the tag footprint will further shrink with the benefit of lower tagging costs.

By year 2021 backscatter signal strengths from miniature RAIN tags may fall below -90 dBm, even down to -100 dBm. The current reader infrastructure simply won’t be able to interpret such small tag responses, therefore larger-than-necessary tags may still need to be used at a higher expense. Therefore a new breed of readers and infrastructure with enhanced reading capabilities will be needed to continue drive down the overall cost of RAIN RFID technology.

Work Continues

What is your view on the significance of the upper ETSI band? Do you have insights into the local regulatory debates in Germany or France? Please contact us and let’s talk!

All blog posts