Join us at CONNECTIONS SUMMIT 2022 in Helsinki, Finland   June 14-16, 2022 – Learn more and register here

Feb 01, 2022

Webinar Series for Barcode Pros – Getting Started with RFID Labels

Last year, we teamed up with TSC Printronix Auto ID and started a webinar series designed for barcode professionals, who are considering expanding their offering to RAIN RFID labels, or who already are at the beginning of that journey. With TSC Printronix Auto ID we saw the need for education as more and more barcode label customers are looking for RFID solutions. 

In the first webinar, What a barcode professional needs to know about RAIN RFID Label and Tag Data, we started from the basics: what are the key aspects of RAIN RFID technology and data, how does RAIN RFID actually work, what are the system components, and most importantly, where can you find more information. 

The second part of the webinar series, What a Barcode Professional Needs to Know about the RAIN RFID Encoding Processes, focused on the practicalities of the RAIN RFID encoding process, equipment, and alternatives. 

In the third webinar, What a Barcode professional needs to know about RAIN RFID label selection and sourcing, scheduled for February 10th, we will cover the most important considerations related to label selection and sourcing process including label specifications, supplier selection, delivery format, handling, and other issues.

Here are my main takeaways from the first two webinars in the series.

Key Takeaways from Part 1 

It is crucial to understand filtering in the context of RFID systems

The nature of RF signals means that they can go through walls and various other materials. A RAIN RFID reader can read a large number of tags simultaneously and without a line of sight, which is, in comparison, required for reading barcodes. For example, when you are inventorying tagged items in storage, your system could be reading tags behind a wall that should not be included in your inventory. Setting up tag filtering correctly ensures that your application works accurately, and that requires following proper data encoding processes. 

There are 9 RFID tags on the wall, but the reader found 54 tags.

There is no “one size fits for all” RAIN tag

What do you need to know about RAIN RFID tags when looking for a tag for your customer? The difference between a barcode label and an RFID label is that the RFID label includes an IC (microchip) and an antenna. Together the IC and the antenna make up an RFID inlay. There are lots of different IC models out there and the type of IC defines what kind of and how much data can be encoded in the tag. The antenna model defines how far the label can be read. Knowing your solution requirements, physical factors such as the label size and item materials, and use cases and data requirements are necessary for finding the best tag for your solution.

Do not use a proprietary numbering system

Keeping the importance of filtering in mind, it is crucial to understand the basics of RAIN RFID encoding systems, i.e., how you are putting data into a tag. There are three data standard families available for RAIN RFID tag encoding

Following one of the established data standards ensures there won’t be issues with tag filtering (and application errors) along the road.

The fourth option is to use your own proprietary encoding systems – Please do not do it! Or if you do, you need to “wrap” your system within the ISO standard or the RAIN numbering system.

Selecting the data standard to use often depends on your customer or the industry you are operating in. Some customers may mandate that you use a specific standard, and many industries have a mandated or de-facto standard in use to ensure interoperability.

Above are my key learnings of Part 1, but many more topics and details were discussed. Watch the webinar to learn more about each of the data standard families, including the structure of the different numbering systems and example use cases, as well as the basics of data security. Webinar part two dives deeper into the standard selection process and the specific advantages of the different standards.

Key Takeaways from Part 2

Label Manufacturing Process

The label manufacturing process includes three steps. In the first step, the IC is attached to the antenna, creating an inlay. In the second step, the inlays are converted in a common backing material called a liner, creating a blank label. In the third step, data is printed on and encoded into the label, creating a finished label.

While the process itself is simple, the manufacturing machines are quite complex. Watch the webinar to learn more ›

Encoding Equipment Types and Process

The suitable type of encoding equipment depends on the volume of tags that need to be encoded. The more sophisticated machines that can process high volumes at high speed naturally come with a higher cost.

An RFID reader can be used as an encoder but it is not an efficient permanent solution.

An RFID printer is purpose-built for encoding and is best suitable for small rolls and batches. They can be affordable and process up to some thousands of labels per hour.

High throughput personalization machines can take in larger rolls and process up to one hundred thousand tags per hour, but they also come with a higher cost.

And finally, encoding can also be integrated into product production or packaging lines.

Watch the webinar recording to dive deeper into the IC selection factors, encoding process steps, RAIN tag memory details, as well as tag locking and passwords – ensuring the right data is encoded in the right way.

The Personalization Process

The personalization process includes both printing data on the label and encoding the tags. The printed data can be the same data that’s in the RFID tag or include additional information. 

High throughput personalization lines often process labels in successive stations. Combining the print and encoding in a high-speed personalization process requires accurate triggering for all the steps and making sure the stations match the process flow.

An example of personalization stations in a high throughput personalization process.

Using an RFID printer for personalization is a good option for smaller-scale projects. An RFID printer prints the barcode and other designed details on the label as well as encodes and verifies the RAIN tag data.

Part 3: RAIN RFID Tag Selection and Sourcing

Learn the most important aspects of label selection and sourcing, including label specifications, supplier selection, and delivery format.

Mar 14, 2019

Future-proofing RAIN Connectivity

中文版 Chinese version

The RAIN RFID market has been growing nicely throughout the latest years. The latest news is that last year a total of 15.4 billion RAIN ICs were sold – and we are nicely on track for more than 20 billion in 2020. At the same time, the market penetration is still very low. According to IdTechEx, in the most successful market segment, retail, we are at around 10% of the total accessible market, and with other segments, such as Industry 4.0, aviation, and food it is even lower. So, there is plenty of room to grow.

We can already see 100 billion tags a year in the horizon. I don’t know if it will be in 8 or 10 years, but we are getting there. Then maybe another ten more years, and we will be at 1 trillion. However, several things in our thinking will need to change for that to happen.

I can see three obstacles that we need to overcome.

  1. We need to think about what happens when applications overlap. We are already starting to reach the situation where tags from one application are entering the read zones of other applications, and it is causing problems.
  2. We need to prepare for people intentionally messing with the applications. This is something that has not been a big problem for now, but it will increase as RAIN RFID spreads wider.
  3. We need to stop thinking in terms of tags and start thinking about RFID enabled items. There will not always be a separate tag that is attached to a product.

Since the industry has accepted that source tagging is the way to go, there needs to be a way for the party that owns the RAIN system to specify to the party that tags the product, how to tag.

For that I propose the Tagging Specification.

The specification is a common language between the parties, and it could also work as a checklist to make sure that all aspects have been considered. But what should be in a tagging specification? This is my proposal:

Geographic Region

In which geographic regions does the tagged item need to be identifiable? This could be for example ETSI, FCC, or global; and this choice will affect the tuning of the tag. With the upcoming upper ETSI band we have more and more countries working around 915 MHz.

Tag Numbering Scheme

How do we encode the tags? This is one of the areas where we need to look into the future. When there are more and more tags out there, the applications start to overlap.

For example, in a running race we have tags in the bibs of the runners provided by the timing system provider. But we also have tags integrated in some of the garments or accessories of the runners, courtesy of the sports retailer. When the runners pass the RFID readers, there is a limited amount of time to detect each runner – or even get several readings for reliable timing – if there are tags around that don’t belong to that application. Juho’s blog post about tag flooding talks more about this. The radio protocol provides ways to ignore the irrelevant tags, but it takes more time, and it requires that all parties think about the numbering.


One action that is closely related to encoding the tag data, is securing it. At the moment, RAIN RFID is not everywhere, and most RAIN RFID readers are professional equipment. But, we are already close to the time when different electronics enthusiasts get their hands on RAIN reader modules. It may take some more time, but at some point we will have more RAIN readers integrated in mobile phones. And when there is an opportunity, there will be sabotage and people trying to get gains for themselves by affecting the RAIN RFID systems.

Of course, different applications have different security needs. There are still surprisingly many applications out there, where there is zero security – the EPC is encoded and that’s it. Most applications lock the EPC memory and passwords. That may work for a while, but in the long run, you need a way to manage passwords, and Nedap’s Danny Haak’s proposal for managing RAIN passwords could be a solution. Finally, in some application there might be a need for authentication functionalities.

Tagging Method

There is a fundamental shift in the industry, where more and more tags are integrated either into the packaging or into the products themselves, be it a running backpack or a tire. Thus the specification is no longer about the tag itself but about the RAIN-enabled product – or maybe a smart product. So, another line in the tagging specification would be tagging method. Is the tag a sticker applied to the product? Is it a hang tag? Is the tag applied to the package? Or is it integrated somewhere inside the product? Perhaps it is up to the supplier to decide? This all depends on whether there is a use for the tag after the point of sale; for example for product returns, warranty etc.

Tag Size

Tag size is often the first specification that comes up. Usually we want the tag to be as small as possible. But there is a compromise between the bandwidth of the tag which affects the geographic range; its performance – how far it can be read from; and size. You can choose any two, but the third one will be a compromise.

Tagged Item Performance

Radio performance matters as well. But it is not the performance of the tag, it is the performance of the entire RAIN-enabled product. And that’s where inlay lists widely used in retail will be insufficient. Still several retailers maintain lists of inlays that are allowed for products sold in their stores. And Auburn University is certifying tags for different product categories. That is an ok starting point, if you want to do hang tagging. But not everyone does.

Determining radio performance for RAIN-enabled products is somewhat more difficult than for just inlays or tags; and the testing methodology should be thought out for each industry. The TIPP methodology was developed for retail several years ago, and now there is an ISO standard family coming out for RFID in tires. The application determines whether in the typical reading scenario there are multiple tags close to each other and from which directions the products need to be identifiable. The reader type used in the application, on the other hand, may determine the requirements for sensitivity and backscatter strength.

It is extremely important that the tagging specification includes a clear verifiable performance requirement – and that it is vendor agnostic. That is the only way that the industry can improve and innovate.

Example of a tagging specification; what elements a specification should contain.

The tagging specification is my proposal for overcoming the obstacles we are facing – and this is my idea about what should be in the specification. Let us hear what do you think should be there!

Dec 06, 2018

Zwei Faktoren die verhindern, dass Anwender von RFID RAIN Systemen von den Verfgbarkeit der hheren ETSI-Frequenzen profitieren

Im Januar 2016 hatte ich einen Blog darüber geschrieben, wie RAIN RFID-Unternehmen ihre Interessen vor allem in Europa vertreten sollten. Die Regulierung der Frequenzzuteilung schreitet langsam voran und jetzt, zweieinhalb Jahre später, ist es mir eine große Freude festzustellen, dass die bisherigen Ergebnisse beeindruckend sind. Lassen Sie uns einen Blick darauf werfen, wie die Nutzung des höheren ETSI-Frequenzbandes möglicherweise die Art und Weise der Optimierung des Tagging (Markierung von Objekten mittels RFID RAIN UHF Transpondern) verändert. Sicherlich werden sich diese Änderungen nicht unmittelbar bemerkbar machen. Mein Beitrag hebt zwei Faktoren hervor die derzeit einen unmittelbaren Vorteil dieser neuen Verordnung für den Anwender behindern.

Wie Tags traditionell abgestimmt werden

Im Jahr 2005 wurde das RAIN-Tagging in Europa weitgehend für das Frequenzband 866-868 MHz weitgehend optimiert. Eine solche Kennzeichnung bot in den USA nur eine sehr begrenzte oder nicht vorhandene Lesbarkeit, dies führte schnell zur Entstehung globaler Tag-Designs.

Während die weltweite (globale) Lesbarkeit im Prinzip keine so große technische Herausforderung darstellt, hat dies die Entwickler von Transponder (Tag) Antennen gezwungen, Einbußen bei der Sensitivität der Transponder in Kauf zu nehmen. Bei der Entwicklung von RFID Transpondern für die Montage auf Metall verlangt die globale Lesbarkeit in den Abmessungen deutlich größere Transpondern im Vergleich zu den winzigen Designs für einen stark eingeschränkten Frequenzbereich (ETSI 868 MHz oder FCC 915 MHz). Dies führt nicht nur zu weiteren technischen Herausforderungen sondern stellt auch einen zusätzlichen Preisfaktor dar.

Die Europäische Kommission genehmigt 4W für RFID-Lesegeräte bei 916-919 MHz

Schließlich heißt es im lang erwarteten Durchführungsbeschluss [EU] 2018/1538 der Europäischen Kommission vom 11. Oktober 2018, dass die Mitgliedstaaten bis zum 1. Februar 2019 drei Kanäle innerhalb des Frequenzbandes 916,1 -918,9 MHz für RFID-Lesegeräte öffnen sollten. Damit wird die Norm ETSI EN 302 208 V3.1.0 ergänzt, die ebenfalls ein RFID-Band zwischen 915 und 921 MHz definiert, allerdings mit eingeschränktem Umsetzungsstatus innerhalb der EU und der CEPT-Länder.

Während all dies nach Jahren der technischen Argumentation und Lobbyarbeit nach einem ausgezeichnetem Ergebnis klingt, werden die Hersteller von Lesegeräten vor neue technische Herausforderungen gestellt. Jedoch wie wird sich diese Entscheidung langfristig auf die RFID-Transponder auswirken?

Der optimale Bereich für Tagging auf globaler Ebene

Wie beabsichtigt, wird mit dem oberen ETSI-Band ein global harmonisiertes Frequenzband eingeführt, in dem alle geografischen Regionen verfügbare Kanäle für RFID-Leser haben!

Auch in Europa bietet sich damit die Möglichkeit, das Transponder-Design speziell für den oberen Frequenzbereich zu optimieren. In Anwendungen, in denen die RFID RAIN Lesegeräte (Reader) viel Zeit haben eine Bestandsaufnahme (Inventory) aller Transponder im Lesefeld durchzuführen und durch alle ETSI-Frequenzen zu scannen, sollte eine solcherart eingeschränkte Reaktion von Transpondern, die nur bei den oberen ETSI-Frequenzen wirklich empfindlich sind, kein Problem darstellen. Dies setzt natürlich voraus, dass die ETSI-Lesegeräte in Zukunft sowohl das traditionelle Frequenzband 866-868 MHz als auch das neue obere 916-919 MHz Frequenzband nutzen werden.

Unbekannter Faktor Nr.1: Umsetzungszeitplan in Mitteleuropa

Derzeit nutzt die GSM-R(ailway) das 918-921 MHz Frequenzband in Deutschland, Österreich und Frankreich auf der Grundlage nationalen Rechts gemäß den Frequenz Verordnungen der Internationalen Fernmeldeunion (International Telecommunication Union, kurz: ITU). Leider überlappt sich dieses Frequenzband und das für Europa neue obere ETSI RFID-Band. Die militärische Nutzung desselben Frequenzbereiches in Deutschland ist ein weiteres Fragezeichen und möglicherweise auch ein Hindernis. Die Europäische Kommission hat dieses Problem erkannt und gibt den Mitgliedstaaten die Möglichkeit, die Nutzung von GSM-R und RFID auf der Grundlage von Geographie, spezifischer Installation, Betriebsanforderungen oder ähnlichem zu koordinieren.

Was bedeutet dies nun in der Praxis? Schwer zu sagen. In Deutschland, Österreich oder Frankreich sind noch keine RFID-Umsetzungsrichtlinien veröffentlicht, also ist es von Vorteil die GS1-Übersicht der Regularien für Updates im Auge zu behalten. Die gute Nachricht ist, dass sich das „Future Railway Mobile Communication System“ (FRMCS) nicht mehr mit RFID überschneiden sollte. Die schlechte Nachricht ist, dass noch nicht bekannt ist, wann die Bahnen ein solches System entwickeln oder einsetzen. Das FRMCS-Projekt ist erst seit 2012 im Gange…. Ich persönlich erwarte, dass der Umsetzungsplan in Mitteleuropa bis zur zweiten Jahreshälfte 2019 weiter an Klarheit gewinnt.

Unbekannter Faktor Nr.2: Auswirkung der Leserempfindlichkeit

Der Lesebereich ist oft mehr eine Abschätzung als eine Tatsache, aber die Sensitivität des Lesegeräts ist in der Tat bereits in vielen Anwendungen ein limitierender Faktor. Ein gutes Beispiel ist die Zeitmessung von Marathonläufen. Herr Nikias Klohr von der race result AG hat dieses Thema in seinen exzellenten Präsentationen bei der Konferenz RFID Tomorrow und dem RAIN Face-to-Face-Meeting in Wien 2018 wiederholt angesprochen.

Wir alle haben in den letzten 15 Jahren gesehen, wie sich die erhöhte IC-Empfindlichkeit der Tags zur Entwicklung von Transpondern mit geringeren Abmessungen und nicht zu extrem langen >20 Meter-Lesereichweiten geführt hat. Wenn sich meine Vorhersage zur Optimierung des Tag-Designs für das 902-928 MHz-Band als richtig erweisen sollte, dann werden sich die Abmessungen und Kosten der Transponder weiter verringern.

Bis zum Jahr 2021 könnte die Stärke des rückgestrahlten Signals (Backscatter) von Miniatur-RAIN-Transpondern auf unter -90 dBm bis hinunter zu -100 dBm fallen. Die aktuelle Leserinfrastruktur wird solche geringen Transponder-Signale nicht so einfach interpretieren können. Daher müssen möglicherweise immer noch Transponder in den Abmessungen größer als notwendig verbunden mit höheren Kosten verwendet werden. Aus diesem Grund wird langfristig eine neue Gattung von Lesegeräten und eine Infrastruktur mit verbesserten Lesefähigkeiten benötigt, um die Gesamtkosten der RAIN RFID-Technologie weiter zu senken.

Fazit: Die Arbeit geht weiter

Wie schätzen Sie die Bedeutung der höheren ETSI-Frequenz ein? Haben Sie Einblicke in die regionalen Regulierungsdebatten in Deutschland oder Frankreich? Ich würde mich über einen Austausch zum Thema sehr freuen! Kontaktieren Sie uns dazu gerne.

Nov 23, 2018

Two Factors that Currently Prevent RAIN RFID End Users from Benefiting of the Upper ETSI Band

中文版 Chinese version

In January 2016 I wrote a blog about how RAIN RFID companies should defend their interests especially in Europe. Frequency regulation moves forward slowly, and now 2,5 years later it gives me great pleasure to conclude that the results so far are rather impressive. Let’s have a look at how the upper ETSI band potentially changes the way tagging is optimized. Surely the change is not immediate, and my story further highlights two factors that currently prevent end users from benefiting from this new regulation.

How Tags Are Traditionally Tuned

In 2005 RAIN tagging in Europe was largely optimized for the 866-868 MHz frequency band. Such tagging provided only very limited or non-existent readability in US, which quickly lead to emergence of global tag designs.

While global readability has not been a major technical challenge, it has forced antenna designers to sacrifice some of tag’s sensitivity. On the on-metal tag side global readability leads to significantly larger sized tags compared with the tiny one-band designs, which is both an inconvenience and a price factor.

The European Commission Permits 4W for RFID Readers at 916-919 MHz

Finally, the long-awaited COMMISSION IMPLEMENTING DECISION [EU] 2018/1538 dated 11th October 2018 says that member states should open three channels within the 916,1 -918,9 MHz frequency band for RFID readers by 1st February 2019. This comes on top of the ETSI EN 302 208 V3.1.0 standard which also defines a RFID band between 915 and 921 MHz, although with limited implementation status within the EU and CEPT countries.

While all this sounds like a fantastic outcome after years of technical argumentation and lobbying, a new variety of technical challenges are introduced for reader manufacturers. However, what will be the long term impact of this decision on the RFID tagging side?

Global Sweet Spot for Tagging

As intended, the upper ETSI band introduces a global harmonized frequency band, where all geographic regions have available channels for RFID readers!

Also in Europe this introduces a possibility to optimize tag designs specifically for the upper frequency range. In applications where readers have plenty of time to conduct inventory and scan through all the ETSI frequencies, such limited response from tags sensitive only at the upper ETSI frequencies should not be a problem. Naturally this assumes that in the future the ETSI readers will utilize both the traditional 866-868 MHz and the new upper 916-919 MHz frequency band.

Unknown Factor #1: Implementation Schedule in Middle-Europe

Currently the GSM-R(ailway) is using the 918-921 MHz band in Germany, Austria and France based on National Law in accordance with the ITU Radio Regulations. Unfortunately this band overlaps with the upper ETSI RFID band. The military usage of the same band in Germany is another question mark, and even a roadblock. The Commission recognizes the situation, and gives member states the possibility to coordinate the use of GSM-R and RFID based on geography, specific installation, operating requirements or something else.

What does this mean in practice? I actually do not know. No RFID implementation guidelines are yet published in Germany, Austria or France, but it’s good to keep an eye on the: GS1 regulatory overview for updates. Good news is that the Future Railway Mobile Communication System (FRMCS) should not overlap with RFID anymore. Bad news is that it’s now known when the railways will have such system designed or deployed – the FRMCS project has only been active since 2012… I personally anticipate that implementation schedule in Middle-Europe gains further clarity by second half of 2019.

Unknown Factor #2: Impact of Reader Sensitivity

The read range is often more an opinion than a fact, but the sensitivity of the reader is indeed already a limiting factor in many applications. An example is marathon race timing, and Mr. Nikias Klohr of race result AG has repeatedly raised this issue in his excellent presentations at the RFID Tomorrow and RAIN face-to-face meeting in Vienna 2018.

We all have seen over the past 15 years how the increased tag IC sensitivity has translated into smaller footprint tags rather than to ultra long >20 meter read ranges. If my prediction of tag design optimization for the 902-928 MHz band is correct, then the tag footprint will further shrink with the benefit of lower tagging costs.

By year 2021 backscatter signal strengths from miniature RAIN tags may fall below -90 dBm, even down to -100 dBm. The current reader infrastructure simply won’t be able to interpret such small tag responses, therefore larger-than-necessary tags may still need to be used at a higher expense. Therefore a new breed of readers and infrastructure with enhanced reading capabilities will be needed to continue drive down the overall cost of RAIN RFID technology.

Work Continues

What is your view on the significance of the upper ETSI band? Do you have insights into the local regulatory debates in Germany or France? Please contact us and let’s talk!

Oct 29, 2018

The ETSI Upper Band Has Arrived! What Happens Then?

中文版 Chinese version

The October 11th 2018 was a day of small celebration in the RFID industry. Celebration, because on that date, the European Commission published their positive implementing decision about the 915-921 MHz frequency band in Europe. Small, because it came out as somewhat of a compromise in the end allowing less than anticipated new channels, and in coexistence with other IoT and short range devices. This was referred to as the squeeze plan. The given implementation deadline is the 1st of February, 2019, so in a few months, country by country, the new band will become a reality.

Global Tags

Now that there is a more or less global frequency band in the world allocated for RAIN RFID, it is possible to design tags that can be operated around the world. For basic labels and average sized hard and on-metal tags this has not been an issue in the past either. It isn’t too hard at all to stretch the tag’s performance band to cover both the 865-867 MHz and 902-928 MHz bands in one go with giving practically no performance away in the process.

Smaller tags tend to be specific for a frequency band, whereas larger labels are easily truly global.

Miniaturization of tags, like the ones needed to track small tools and surgical equipment, as an example, has come with a cost. It’s near impossible to make a tag which is simultaneously: (1) small, (2) wideband and (3) has a good performance. Pick any two qualities and say farewell to the third. With the miniaturized RAIN tags, the lost quality has predominantly been the wide bandwidth. This has led to separate tag versions for the ETSI 866 MHz region and for the 902-928 MHz FCC band. The very smallest tags have even had trouble covering the whole FCC band. Luckily, there is the obligatory frequency hopping to cover this deficit. Now, making a global miniaturized tag is easy, just aim at the 917 MHz mark and be done.

A New Breed of Readers

In all likelihood, we are going to witness the emerging of a new breed of RAIN readers as well. A truly global reader would be nice, and will surely arrive one day. Long before that, we need a new spec ETSI reader, one that will operate both on the European lower and upper band. The utilization of the two bands will help better cover all tags, especially all those miniaturized tags, tags with close-coupling issues and large challenging populations. The utilization of both the bands interleaved might also give rise to features, like more accurate tag ranging and positioning.

From a hardware point of view, there lies a small re-design challenge. Most of the smaller inbuilt circular antennas in the hand-held readers are certainly unique to ETSI or FCC currently and need some tweaking to cover both bands with a good performance. Other hardware like directional couplers, SAW filters, and power amplifier matching might also not be directly functional for both bands. While these are fairly simple RF engineering tasks to put right, it means that a big portion of the existing readers probably are not updateable to the new European RF landscape with a simple firmware update.

Different Flavors of the Upper Band

When we look closer into the requirements at different regions that use the upper band, we start to notice a lot more differences to which the readers need to adapt. The first thing that will catch attention is the sheer difference in the number of channels available in the bands such as FCC and Brazil as an example. After that one would hope that the three allocated ETSI upper band channels would be ones picked from the FCC channel, but actually none of them coincide. Same goes for Chinese, Japanese, Russian and other channels, they just are not the same. Also, the center frequencies often do not give much of a room for flexibility. For instance, ETSI specifies a channel center frequency maximum deviation of 10ppm, which equates to +/- 9.2kHz. So, for example, there is no compromise available to be at for the nearly coinciding channels of 916.3 MHz (ETSI) and 916.25 MHz (FCC) simultaneously.

To add to the complexity, different regions have varying regulations of:

  • channel hopping
  • dwell time
  • Listen before Talk (LBT)
  • sensitivity limit
  • modulation speeds and formats (because of spectral mask).

At the moment all of this is not a huge technical hurdle to accomplish. But the day will come when readers start to cross borders installed in cars, trains and even operating in mobile phones, and then it will be a major inconvenience to track location and change settings at every border.

Channel center frequencies in various regions. Most use their own list of frequencies which just do not coincide.


The coming changes in the Europe and the already existing different RAIN RFID bands in the world have long affected the tag design. The new ETSI upper band is a move to the right direction to make RFID systems more global. This will give the reader manufacturers a lot of thinking and rework for the months to come – the outcome of which will be interesting to see. The two different European bands will start to co-exist and readers have one more set of channels and regulations to adapt to.

Luckily when it comes to the minor channel frequency differences in the upper band, at least the tags don’t mind.

Mar 09, 2018

Connections Summit Brings RAIN RFID, NFC, and AIDC Together

中文版 Chinese version

Until now, it has seemed that different RFID and AIDC technologies, as well as the organizations that represent them have resided in their own silos. Both RAIN RFID and NFC have been focusing on their own applications and they don’t seem to have much in common. At the same time, both technologies have been quite distant from all the discussion surrounding the Internet of Things (IoT).

But as a matter of fact, the two technologies have a common goal: they strive to be means for connecting items to the cloud. And the technologies don’t really compete against each other. So, it makes perfect sense that the two industries started to pull into one direction. That is why the RAIN RFID Alliance, the NFC Forum and AIM Global joined forces to arrange the first Connections Summit at the Google campus in Sunnyvale, California.

Connections Summit 2018 Attracted Excellent Attendance

The Connections Summit brought together the RAIN RFID and NFC communities, as well as a lot of curious visitors, into a day full of presentations and panels that covered various aspects of these technologies. Overall, there were over 450 people participating, which I think is a huge success. The presentations covered the host Google’s view of the IoT, IDTechEx’s market information, and numerous case studies highlighting the use of both NFC and RAIN RFID. It was clear that RAIN RFID, NFC, BLE (Bluetooth Low-Energy) and other wireless technologies, as well as optical codes have their own benefits and uses. There are some overlaps, but the overlapping application areas are shadowed by unique benefits of each technology.

Intranets of Things is not True IoT

Even if each data collecting technology has its own benefits, there are also shared development needs in the broader identification and IoT industry. In many presentations and discussions, the questions related to the collected data. There is a clear need for common standards on how to point the ID codes to actual data in the cloud (the digital twin). Currently, each technology relies on different methods and standards, and in many cases, applications are company-specific. The current Internet of Things (IoT) is actually a number of separate intranets of things, offering very little meaningful IoT data available “in the internet”.

Data Sharing Requires Determining of Ownership and Privacy

In order to move from the intranets to real IoT, data sharing standards are needed. The topic is complicated: In addition to pure standardization, also questions of privacy and data ownership have to be addressed. What part of the data is owned by the owner of the item? What is owned by the organization collecting the data? And who owns the data that is aggregated from multiple sources? The discussion has started, but the IoT industry has a long road ahead before all these questions are solved.

So, what is the verdict? Did the event work out? Yes! There was definitely a need for this kind of cross-pollination. Everyone I talked to at the event emphasized that they had learned a lot. I am sure that this event was not the last of its kind, I am looking forward to the next one.

Jul 07, 2017

The Evolution of RAIN RFID Testing Started with Inlays, and Ends with…

中文版 Chinese version

Evolution of organisms is one broadly accepted theory. Let me walk you through the phases evolution has taken when it comes to RAIN RFID tag testing.

Starting Point: The RFID Inlay

In the end of 90s there were no off-the-shelf solutions to start doing RFID research and tag testing. Hence the classical Radar Cross-section (RCS) seemed like a great way to characterize the UHF antenna of an inlay. It’s just that such a passive antenna test didn’t enable designers even to optimize the forward link: matching the impedance of IC with the impedance of the antenna. As a result, it was a struggle to get the tag tuning right. Additionally, the RCS measurement told nothing of the read range that the inlay design can deliver.

Delta Radar Cross-section (deltaRCS) was a serious step in the right direction for two reasons: the impedance match could be better analyzed and the fundamental reverse link parameters were brought into consideration. Read ranges started to improve. Around 2005-2007 also the first commercial tag test systems became available. Those systems, such as the Tag Analyzer from SAVR Communications, the Voyantic Tagformance and MeETS from CISC, already utilized the Class 1 Gen2 protocol to better grasp the actual performance of an RFID inlay. Pavel Nikitin’s paper from 2012 explains the theory and practicalities of diverse test systems in detail.

As tag prototypes were made and production samples tested, many companies focused mainly on the inlay performance in free air conditions. It didn’t take long for the first experts to realize that the test results better correlated with the real-world use case performance when the inlays were attached on various materials prior to testing. So, approaching the current decade it seemed half of the industry was busy working with various reference material sets, and the other half with aluminum plates of various sizes.

Era of Testing Tags on Items

To bring more sense into real-world performance of inlays, Voyantic introduced the Application Development Suite already in 2008. With the Population Analysis function anyone could visualize and study the behaviour and properties of tags in groups. As we have later learned, very few did such analysis before 2011, which manifests two related findings:

  1. The more groundbreaking the concept, the longer time it takes to really sink in
  2. It takes a lengthy period of time for engineers to learn how to explain certain groundbreaking concepts in an understandable way.

Tag-to-tag close coupling effects are indeed complex, and only partially understood and explained by the academic community even today. As a kind of workaround, the ARC Program emerged in 2011 to combine exhaustive label testing with data collection from actual RAIN use cases in retail. Outcome of that analysis are the ARC performance categories and the related certified inlay lists.

These ARC inlay lists simplified tag selection for the US retailers. I’d also state that the success of the ARC program pushed the technology vendors to seek additional ways to ease the adoption of RAIN RFID technology by collaboration. It can be said that the Program may have slowed down the market entry time for new inlay types and vendors obviously because they needed to pay and wait for certification tests before getting on those lists.

On the positive side waiting pays off, because the ARC inlays lists are one functional way for a new vendor to gain access to the US retail deployments.

Early this decade the performance testing elsewhere in the RFID ecosystem already focused on tags on actual items. However, the industry lacked a documented and open framework to correlate various test setups with each other. This void, together with the industry’s quest to improve the scalability of deployments, led to VILRI’s tagged item prototype project. Eventually that project gave birth to the Tagged Item Performance Protocol, aka TIPP, in 2015.

TIPP is a standard-like guideline from GS1 that establishes and combines three fundamental aspects:

  • Key performance metrics for RAIN enabled items
  • Test methodology that anyone can repeatedly use to extract these metrics
  • Performance grades for individual and stacked items.

Among its other benefits, the open and thoroughly documented TIPP guideline enables anyone to easily communicate their tagging requirements without sharing details of their processes and use cases.

Following the TIPP approach tagging solution providers are free to innovate and offer their latest products and solutions immediately without the need to have them certified by third parties.

How Would You Like Your RAIN Enabled Items? Separate, Boxed, Stacked, Hanging…

Close coupled RAIN enabled sporting goods

In the fall of 2017 an update to TIPP introduces a new test protocol for dense hanging stacks. This test protocol puts 100% reads of all the items to the focus, and thus leaves the close coupling effect purely for tagging experts to handle and solve. I anticipate that RAIN deployments especially around sporting goods retail will benefit from this new test protocol.

RAIN Read Performance Requires Input Also From the Reader Side

Albeit the tag side already enjoys highly sophisticated performance test framework, there are still a few missing pieces on the RAIN reader side. The Reader Sensitivity Test Recommendation from the RAIN Alliance was a grand milestone already. The dialogue and evolution would greatly speed up if the industry stakeholders, such as GS1 and RAIN Alliance, would take initiative to derive meaningful open performance metrics for read zones and readers in general.

That’s my evolution story for now. And no, the evolution of RAIN tag testing has not stalled, instead it’s constantly looking for new paths to make RAIN technology spread more efficiently. That’s also where Voyantic keeps on investing in. Your feedback on these thoughts will be greatly appreciated!

Apr 27, 2017

Four Factors That Make Japan the Perfect Place to Deploy RAIN RFID in Convenience Stores

中文版 Chinese version

The Nikkei Asian Review released a story about how some of the largest Japanese convenience stores plan to deploy RFID as a fix to severe labor shortage. Firstly, I am personally a huge fan of Japan and secondly, I’ve done quite a bit of work to speed up RAIN RFID deployments in the retail market. Still this announcement from Japan took me by surprise, and let me explain why.

Nikkei Asian Review: New RFID self-checkout systems will eliminate the need to scan each item individually, helping to cope with a severe lack of manpower.

Unconventional Motivation

This is the first time I’ve heard labor shortage to drive the RFID deployment. In Europe and the USA it’s been more about omni-channel sales that creates sales uplift, and all the efficiencies that simply result from high inventory accuracy.

Still, as you give it a moment to sink in, isn’t this just perfect news – labor shortage as a new driver has emerged and greatly motivates several large stakeholders to engage in this initiative, including Seven-Eleven, Lawson, Familymart and even the Japanese Ministry of Economy, Trade and Industry!

For me Japan is the most intriguing piece of the plot, and let me outline the four factors that I believe will help this initiative all the way to success:

Factor #1: Collective Efficiency in Their Veins

The culture enables the Japanese to behave and act highly efficiently in extremely large and dense crowds. If a new form of practice is available to improve public efficiencies, the Japanese are the first ones to oblige.

Consider the notorious train rush every morning between 8AM and 9AM. The Yamanote Line, for example, is an amazing experience. With a ridership of over 1,000,000 passengers overcrowding is both a challenge and a fact. Keep to the left and go with the flow, yes, but there is more to the story.

Factor #2: Payment Cards as the Sixth Finger

You can’t get around in Tokyo without a Suica® or a Pasmo® card. Based on the Sony FeliCa® technology, these rechargeable payment cards enable the commuters to quickly pass through the ticket gates at the JR and Subway stations, and help maintain the efficient flow of people in the jampacked station platforms.

You can conveniently use the same payment cards for many of the small purchases you stumble around the stations. As you take a moment with it, actually kiosks, taxis, cafes and many other small businesses seem to even endorse Suica® over coins.

Factor #3: Ubiquitous Automation

For the sake of efficiency and convenience, a metropol such as Tokyo is filled with automation to assist the consumers. I’d especially highlight the vending machines that you can find around in corridors and even on the station platforms. Take the automated ordering systems at fast-food restaurants as the second example. Automation and advanced user experience even follow the average Haruto-san all the way to the restrooms as well.

Factor #4: Local Retail Technology Vendors

If one has ever visited the RetailTech Exhibition in Tokyo Big Sight, it is pretty clear for a Japanese retailer that there are many Japanese based top brands to choose the implementer partner from: Toshiba TEC, Sato, Fujitsu, NCR, Ricoh…. On top of that, there is a great number of local experienced RFID label solutions providers, such as FVG, Sato, Toppan Forms, Toppan Printing, and Fine Label to name a few. Altech provides expertise and solutions related to RFID label testing and manufacturing.

A local partner is a great asset for clearing obstacles and moving any project forward at a fast pace.

A Few Ideas to Support Success

As a few generations of Japanese consumers are native to utilizing payment cards and automation in their everyday life, the RFID based self-checkouts at convenience stores should be nothing new. The local ecosystem of RAIN RFID vendors already exists, so I would only list two long-term implementation success factors to closely consider by all the stakeholders:
1. Utilize EPC numbering for the tagged sale items, because proprietary item numbering systems overlap sooner or later and then erode the RFID system reliability
2. Utilize the GS1 TIPP Guideline to specify the tagged item performance requirements, because TIPP makes the deployment more future-proof and enables the suppliers to manage tagging economically.

Voyantic provides easy-to-use turn-key solutions for TIPP testing.

With this said, I hope all goes well with the initiative. Please drop me a line if you’d like to raise further conversation around the topic!

SUICA is a registered trademark of East Japan Railway Company
PASMO is a registered trademark of PASMO Co., Ltd.
FeliCa is a registered trademark of Sony Corporation

Apr 21, 2016

RFID, Love or Die

Dear reader, my name is Lluis Bueno, and I love RFID. Do you? I belong to the Spanish company NextPoints, and in my work I have met hundreds of professionals and companies working in the RFID market without any passion for the technology… and most of them are not working in the RFID market anymore. So, why is love required for RFID business to survive? Let me share a few real stories with you.

Without any doubt, RFID is living its best moment: Internet of Things is more real than ever, RAIN RFID Alliance has more than 100 members, GS1 released TIPP guidelines for RFID tagging in retail, RFID inlays reached the lowest price ever without losing any quality… but perhaps, even with this friendly environment, the RFID company you created or joined some time ago is not alive anymore.

What was the reason for failure then? All of them had something in common: their lack of love towards the technology. Focusing on the product is of course important, but prioritizing price and forgetting collaboration with other players did kill them.

RFID is not just one more technology, it still needs your support to develop the market, and you need the market to be developed to make business.

RFID has its professional tools and methods of doing measurements, and this is something many of the professionals in the market are not aware of. There are only two ways to work with RFID: the right way or the wrong one, and there is no midway. Fortunately, I met Voyantic years ago and they showed the right way to me. Doesn’t it sound like some kind of religion? That was exactly what I felt the first time I met Mr. Juho Partanen: I had always thought I was doing things, if not the best way, then good enough for my RFID business. But I was doing wrong until he opened my eyes and he led me on the right track.

Most of the RFID companies ─ large end users, system integrators and even manufacturers of RFID readers or tags ─ are still using the same methods for testing their products and solutions which they used 5 years ago: conventional readers instead of professional testing systems, trial and error instead of real measurements, empirical reading distance instead of other key measured parameters. They think they are getting enough information from those old methods to understand how RFID works, but they really have no idea of what is happening. Why are they not taking their own business seriously? Is lack of budget the reason? No. Lack of love towards RFID is.

Most of the RFID companies think that purchasing RFID products at the best price will turn their company into a successful one. Forget it! Price just helps. Qualified partners, not only products but business providers, RFID alliances involvement, real RFID measurement tools…. You are missing much more aspects than just price. Are you aware of the changes in RFID ETSI frequencies, TIPP guidelines, RAIN RFID Alliance…? Information, commitment, involvement… definitely, love. Love is missing all along the supply chain, so we need to spread love since the beginning.

Please, you have chosen RFID as a driver technology for your projects, products and solutions. Love it and it will love you back with everlasting business. Take it seriously, or partner with companies who take it seriously for you, but do not ignore RFID and treat it as any other technology or it will die and make your business pass away.

In my work I have heard dozens of questions of RFID – why is it not performing as expected? What should be done differently to make my RFID business bloom? Download the “Questions of RFID – Loving Wisdom” document below to read the commonly asked questions with my answers.

Download Lluis Bueno’s RFID Q&A!

Download Lluis Bueno’s loving wisdom for frequently asked questions of RFID. You’ll find answers to many baffling RFID questions regarding tag and reader selection, system setups, link margins, and troubleshooting.
For your convenience, many of the answers come with pictures, too!

Dec 29, 2015

How to Win Sales with Good RAIN RFID Test Data

When selling RAIN RFID tags: wouldn’t it be great to prove that the proposed tag is the best possible one for the customer’s application instead of just sending out loads of free samples hoping that the customer tests them properly? And when purchasing: wouldn’t it be great to have comparable data of how each tag works in your application instead of “our tags are the best ones, you can trust us” statements?

Guess what: it is possible, and in most cases, the salesperson or the buyer just needs to know what to ask. Tag developers have a lot of characterization data ready. Read on to see how to leverage that data following the 3-step approach!

Step 1: Extract Tag Characterization Data from the Production Quality Log

Useful RAIN RFID tag data combines production quality information with detailed laboratory test results. Production quality data is a good starting point since it shows the overall quality variation. With Voyantic’s Sweep Data Analyzer, it is easy to identify the typical and the worst acceptable tag and to quantify variation. Variation can be described, for example, as each tag having a sensitivity of -8 dBm +/-2.5 dB. With the Tagformance viewer software, the sensitivity values can also be translated into read ranges.

RAIN RFID tag quality – variance in RFID production quality

Step 2: Connect RAIN RFID Tag Performance Data to the Use Case

Detailed information about the performance of a RAIN RFID tag can be generated by testing the selected sample tag (typical tag or weakest tag) in a laboratory environment. The goal of the laboratory tests is to show how the tag would perform in different applications. Simply place the tag or tags on Voyantic Reference Materials in different arrangements and run the tests on Tagformance.

When proper test data is available, there is no need for extensive field tests with various tag and reader combinations. Shortening the field tests saves time and money significantly – both for the seller and the buyer.

Typical test results include RAIN RFID read ranges and orientation patterns on various materials and within diverse tag populations. When the tags are attached to different materials, their tuning, and performance level change, with the test results, it is possible to evaluate what the read range would be with varying models of readers. The results predict how the real-life RAIN RFID system will work. With proper tag data, even RAIN RFID readers can be easily compared, and the bottleneck of the system performance can be identified.

Step 3: Let the Customer Play with the Data

Utilizing RAIN RFID tag test data is really simple. As a result, you are able to assist your customer efficiently, and most likely, also to shorten tag sales cycles. If you want to learn the specifics related to RAIN RFID tag data crunching utilizing the Tagformance software, please read on.

Tagformance Read Range test results are an excellent way to compare tags. Choose test data with the tag population and material corresponding to the RAIN system use, and enter reader the information.

The graphs show the read range of one RAIN RFID tag with two different readers.

RAIN RFID tag read range

When the tag is tested with the RAIN RFID reader parameters entered into the system, the test results show the overall system performance.

In the first case, the system level read range bottleneck is tag sensitivity, and the resulting read range is 8 meters (26 feet) in the FCC frequency range.

RAIN RFID tag read range and reader sensitivity

In the second scenario, the reader has lower sensitivity, read range decreases to 5 meters (16 feet), and the system level bottleneck is reader sensitivity.

It is also easy to tie production variation to the test results. With production, variation included the read range variation is 3.5 meters to 7 meters (12 feet to 23 feet).

RAIN RFID tag read range and production variation

Producing the same information with tag samples and a reader is difficult and uncertain. Depending on the selected sample tag, the expected read range may be anything between 12 feet and 23 feet, and there is no information about the variation. Surprises await in implementation, and counting accuracy is likely to be well below 100%.

Other test results show, for example, the orientation pattern – how the read range changes when the tag and the reader are not facing each other directly, and how the tag performance changes when there are multiple tags in front of the reader.

Good RAIN RFID Tag Performance Data is a Powerful Sales Tool

There is a lot of tag test data available, and the Tagformance viewer software is an excellent tool for presenting the data to the customers.

Tagformance viewer software

Tagformance Viewer is Available and Can Be Used by Anyone

With the viewer software, it is easy to choose results from RAIN RFID tag tests corresponding with the customer’s intended use scenario, input reader information, and see the actual system-level performance.

Download a Sample Datasheet Showing RAIN RFID Tag Performance and Quality Information

Download here an excerpt from a sample datasheet showing how to tag data could be presented in a datasheet. The sample shows how the tag performance and quality information is presented in a format that is useful for the customer in tag selection.

Download Sample Test Data and Tagformance Viewer Software

The Tagformance viewer software can be used to view test data. By inputting different reader parameters, such as reader power, to the software, the application shows how the read range changes. By inputting tag variation information, read range variation can be seen. The viewer software can be used for viewing and analyzing data from the tag developers and manufacturers. Would you like to try? Contact us and I will be happy to send you the software installer with demo results!