All blog posts

Smart Labels – Great Opportunity for Traditional Label Companies

Apr 26, 2018

中文版 Chinese version

Smart labels are one of the most common RFID tag types, especially in retail business, but also in numerous applications in other industries. Increasing acceptance of RFID and the double-digit growth rate of inlay/tag volumes in the past years have made smart labels an attractive business segment not only for the established RFID companies, but also for the traditional label manufacturers.

The barrier for a label company to enter the RFID/smart label business is very low as their core business comprises of printing and converting anyways – adding “inlay insertion” or “inlay lamination” to the converting process will increase the label manufacturer’s value-add and enables meeting the customers’ RFID and IoT requirements.

The Smart Label Opportunity

Label market is a big business, but expected to grow only a few percent a year, which is roughly double compared to print market in general though. The big opportunity lies in smart labels where CAGR of 15 to 20 percent is expected in the coming years, thanks to continuous tag cost reduction and huge amount of new application areas utilizing RFID technology.

Retail industry has been working long and very hard to utilize RFID technology and counts for the biggest tag volumes as of today. If one of the initial drivers justifying RFID in the early days was efficiency improvement in logistics, today there is an increasing number of drivers and quantified value-add right next to the consumers:

  • Integrated customer experience in omni-channel environment
  • Customer engagement and consumer interaction
  • Unmanned stores
  • Freshness and cold-chain tracking
  • Labeling obligations by authorities
  • Anti-counterfeiting measures.

RFID is the dominating technology today in smart labels, and RFID labels are successfully used to address all the requirements mentioned above. The big volumes of smart labels are typically produced by key players in RFID industry, i.e. either inlay/tag manufacturers or converters, however there are also several smart label producers focusing on specialized tags and applications. Integrated part of the smart label business are also the value-add services like tag performance testing and encoding of product and supplier specific information in each tag.

The current suppliers will certainly increase their capacity as the demand grows, but at the same time there is an opportunity window open for new entrants to take their share of the smart label market and related services.

How to Make Your Labels Smart?

Smart labels based on RFID technology (RAIN and/or NFC) are produced with a dedicated converting machine laminating the RFID inlays between the top material and the liner as shown in image below.

The selection of suitable RFID inlay type and supplier would be based on the RFID application and customer specification or alternatively smart label manufacturer’s own specification. Below image by permission from BW Papersystems, from their Speedliner RFID Converting machine brochure, illustrates RFID converting principle:

It is not only about manufacturing though, as smart label production brings also new requirements for the process:

  • Functional and/or performance testing to manage the RFID tag quality
  • Encoding capability to store customer-specific data in each tag.

The good news is that these capabilities can be integrated into converting machines and they create a value-add service opportunity. Smart labels can be an entry point to the RFID value chain for a traditional label company with increased turnover and profits.

Testing and Encoding Added-value

With the increasing tag volumes and adoption of RFID, the demand for RFID testing has grown even faster. This is caused by the fact that many RFID applications are fully integrated into various business processes where the basic requirement is that each tag can be read reliably every single time in the field – otherwise the efficiency of the process would collapse.

Accordingly, the RFID end-users are setting more requirements for quality assurance in RFID production and demanding actual performance measurement instead of simple pass/fail testing by RFID readers.

RFID Performance Testing

Ensuring high smart label quality (= successful read in the field) requires more than simple pass/fail testing with an RFID reader. More reliable performance testing can be done by measuring the tag sensitivity in the production line with variable power levels and several frequencies using an RFID production testing system.

Voyantic Tagsurance inline production testers can be used in single and multi-lane configurations integrated with various third-party RFID machines, like Mühlbauer CL Light RFID Converting Line pictured here.

The same Tagsurance solutions are also available for Voyantic Reelsurance and several 3rd party offline test machines for sample testing of finished labels or incoming inspection of the outsourced RFID inlays.

Encoding and Personalization

New requirements are set also for encoding functionalities as new RFID applications and users are emerging. There is a growing need for managing deliveries of special tags with customer specific memory content, often with short delivery time and rather small batches. Encoding functionality can be integrated either in converting machines or alternatively done in dedicated offline personalization machines.

How To Learn More?

If you are considering making your labels smart, please contact us to schedule an online meeting to discuss your needs. You can also learn more about our production testing solutions and reach out to us to learn more about Voyantic solutions with our machine vendor partners.

Read More

All blog posts
All blog posts

Managing RAIN RFID Production Quality

Nov 03, 2017

中文版 Chinese version

RAIN RFID use has grown rapidly and implementations are expanding. Nowadays RFID is business as usual and quality management is an essential part of normal business operations. In past few years the RFID industry has learned a lot about quality management methods and processes. In my opinion there is still room for improvement. Quality really matters in RAIN tag manufacturing as high readability of tags is expected practically in all applications. In this text I describe how some quality management principles relate to tag manufacturing.

Continual Improvement in RFID Tag Manufacturing


One of the key principles in ISO 9000 quality standard series is continual improvement and accordingly

  • quality must be measured;
  • results need to be analyzed; and
  • operations will be improved.

There are two ways to look at the quality:

1 – Quality of design is measured against the properties (e.g. features, functionalities, performance) the supplier intends to deliver to the customer. Improvements can be driven for example by new kind of customer requirements, changes in competing products and availability of new components.

Typical performance measures for RAIN tags are sensitivity/read range and orientation pattern, performance on different materials (tagged items) and in proximity of other tags. Additionally, for example memory options, command support, mechanical design and dimensions and durability are ingredients of design quality.

Improving Quality of design is responsibility of the R&D and usually requires new product development, e.g. modifying the antenna geometry. Improvement cycles are relatively long.

2 – Quality of manufacturing describes how much variation there is in performance of the key properties compared to the defined design quality.

In RAIN tags the typical measure of quality is sensitivity. For example: Sensitivity of the tag attached to PVC plastic, with 915MHz frequency is -20dBm +/- 0.5dB. In this example the -20dBm is design quality and +/-0.5dB is variation describing manufacturing quality.

In managing Quality of manufacturing the performance is measured by the quality organization and corrective actions can be implemented very quickly.

The basic methods for controlling quality in tag manufacturing are sample testing and continuous in-line testing.

RAIN Tag Manufacturing Quality Control

One single solution doesn’t fit all RAIN tag manufacturing processes, but the principles of applying either sample testing using an off-line tester or implementing the tester into the production machines to enable 100% in-line testing are universal.

Sample Based Testing

For example, with 100,000 tags daily production, 99% confidence level with 2% margin of error requires about 4,000 tags to be tested. In practice, 1-2 tested tag rolls per day per manufacturing line would be the statistically valid sample size. Voyantic Reelsurance handles the testing automatically after the testing is initialized. Several rolls per day can be tested with one machine, and the system produces full quality logs. Reelsurance is an example of an off-line reel-to-reel tester capable of testing RAIN tags either in inlay or label form. The testing capability is based on integrated Tagsurance tester.

100% Testing and Quality Log

Voyantic Tagsurance tester can also be integrated with various manufacturers’ chip attach, converting or personalization machines enabling 100% testing.

The testing creates a log file that can include TID and EPC codes of the tested tags, as well as test results. This is a handy tool for communicating 100% test results. The data can be used for finding out statistical information from the manufacturing quality: variation, standard deviation, percentiles, mean values.

Real-time Visibility to Production Quality

When information is available for the production line operator real time, it is easy to see when quality starts to deviate, and corrective actions can be taken immediately, without sacrificing production yield.

RFID Tag Manufacturing and Six Sigma

A typical output from a tag manufacturing process used to be skewed normal distribution with additional second peak as shown in the picture across wide frequency band: the “stray” tags made it impossible to implement Six Sigma to the letter. Instead, deviating tags can be sorted out, and Six Sigma limits may be used for the remaining part.

Developments in new RFID chips have changed the situation. Some tag models can be manufactured with normal distributed sensitivity variation. It is possible to implement Six Sigma quality control, maybe with 4-sigma limits to start with.

Contact us to arrange an online demo and to discuss more about quality control in RAIN RFID tag manufacturing!

Quality Testing Solution for RFID Label Production

Tagsurance 3 is the next-generation quality control solution for high-speed RFID inlay and label production lines.

All blog posts