All blog posts

The Pioneers of UHF RFID: The Aerospace Industry

Nov 06, 2015

中文版 Chinese version

Retail RFID seems to get the most limelight in the RFID industry at the moment. And that is not surprising because of its huge tag volumes and growth rates. But many other sectors are benefiting from RFID use as well. One of my personal favorites is the aerospace industry.

The aerospace industry has been one of the pioneers in UHF RFID use

The most visible aerospace company in the RFID space has been Airbus. Their announcement, at the beginning of this year, to ask their supply base to tag all traceable items with passive RFID shows that they are serious. But also Boeing and Embraer come across regularly in RFID related news. To serve this industry, an ecosystem of RFID technology providers has emerged. Companies such as Fujitsu, Maintag, Tego, OAT Systems, and Brady, to name a few, have a special focus in aerospace RFID. Besides, the ecosystem has generated business opportunities for the supporting industry, see, for example, the Stanley Black & Decker success story.

What is Required from RFID in Aerospace?

So why are some RFID companies specializing in the aerospace industry? Can’t we just buy a roll of RFID labels and start tagging airplane parts? Well, it is not quite as simple as that. Several aspects set aerospace RFID, apart from many other application areas:

  1. Large memory required: The aerospace industry requires that a lot of information (birth records, maintenance records, etc.) is stored directly into the tag. They don’t want to rely on a connection to an external database which is usually used in retail RFID.
  2. Valuable items: The tagged items are of high value and are often used for ten years and more. As a result, tag durability is more important a driver than tag cost.
  3. Harsh conditions: Tags in and out of an airplane need to endure vibration, significant variations in temperature, humidity, and pressure, and many other conditions unfamiliar to retail applications.
  4. Global functionality: As airplanes frequently cross country borders and oceans, the RFID tags need to be readable around the world. As a result, the tags must be designed to be wideband.
  5. Less sensitive tag ICs: Due to their larger memory content and possible special functionalities, the tag ICs used in aerospace typically need more power. As a result, many applications are limited to read ranges of 15 cm to 3 meters.

A Need for Standards

The aerospace industry realized that they need standardization for flyable tags as early as 2006. That is when a group of experts in the field decided to develop a standard under SAE International. SAE AS5678, “Passive RFID Tags Intended for Aircraft Use” was born. The standard includes a broad set of different environmental tests to make sure that a tag would endure the harsh conditions of a flying airplane. Sun APT Test Center was the first lab to start certifying tags according to the standard.

In addition to environmental testing, the standard also describes RF performance tests for the tags. The standard described a very professional and well repeatable measurement methodology. But even more interestingly, the standard divided tag performance into performance grades, somewhat similar to what the GS1 TIPP standard would do for the retail industry in 2015.

AS5678 was truly ahead of its time.

As a result, an airplane manufacturer could simply require a grade B tag to be used by its suppliers without having to specify the tag model or detailed performance parameters.

AS5678 performance tests are typically performed in a small anechoic chamber

Now, in 2015, SAE is revising the AS5678 standard to reflect the new information gained during the years. I have been a member of the team, revising the standard as well. The changes, however, are not very large, which well reflects the quality of the first standard version.

Specific RFID Testing Needs of the Aerospace Industry

The special requirements of the aerospace industry for RFID lead to some specific testing needs:

  1. Measuring tag performance: Because of the large memory contents, wide bandwidth, and rugged design, aerospace tags may have limited read ranges. The AS5678 test methodology can be used to determine the acquired read range and the matching performance grade.
  2. Verifying tag bandwidth: Since a wide bandwidth is required, the performance of the tag needs to be tested typically throughout the 860-960 MHz frequency range.
  3. Environmental tests: AS55678 describes a large set of environmental conditions that the tag needs to endure. The performance of the tag should not degrade during the tests.
  4. Memory testing: The memory of an aerospace tag is organized differently compared to a typical label. As a result, there is a need to have good visibility to the tag memory contents.

My company Voyantic has delivered test and measurement systems for both end-users and technology providers in the aerospace RFID industry. The systems promote design and manufacturing excellence, as well as fluent technical dialogue between pioneering companies within the industry.

If you are interested to learn more, please download our application note below or contact us, and let’s talk more!

Learn How to Test UHF RFID Tags in the Aerospace Industry

Download The Essential Guide for UHF Tag Testing in Aerospace

All blog posts
All blog posts

Tagged-Item Grading Helps Retail UHF RFID Projects

Aug 14, 2015

Retail and the retail supply chain are among the most significant users of UHF RFID technology. However, retail RFID projects are not the most simple ones. Items in retail come in all shapes, sizes, and materials. They are shipped in different boxes and stored and displayed on all kinds of racks, shelves, and tables. Also, different readers are used in various applications: logistics tracking, inventory count, RFID EAS, POS, and so on. I was involved in several retail RFID projects, and I have seen how complicated the performance optimization can be.

GS1 Tagged-Item Performance Protocol (TIPP) was developed to help retail RFID by making buying and selling tags easier. But what do the TIPP guidelines mean, and what kind of testing is required?

Goal: Accuracy in Inventory Counting

The purchase of RFID tags for retail items used to be complicated. The goal is simple: to have good counting accuracy (read rate) and a long and controlled read range. But I have seen how simple read range and counting accuracy requirements turn into a complicated mess of lengthy and costly field testing and piloting. Tags and readers are often selected separately, and system-level optimization is left to a trial-and-error process, if not entirely forgotten.

One approach used to be describing various use cases in detail and relying on the suppliers and technology providers to deliver tags that would work in all of the applications. The supplier was accountable for performance but had in practice minimal possibilities to achieve the goal.

Another strategy was to test extensively and to list accepted tags for different product categories. That way, the supplier was no longer accountable but was forced to buy specified tags without a possibility for price competition.

Finally, when using TIPP, the supplier is accountable for performance, and also has all the tools needed for delivering and verifying it.

Tagged- Item Grading Makes Retail RFID Projects Easier

The Tagged Item Performance Protocol makes buying and selling tags easier. The idea is familiar with many goods, from engine oils to clothes. It is a lot easier for a buyer to purchase shoes of size 41 than to provide a list of different measures of the foot. And it is a lot easier for the supplier to produce, stock, and sell shoes with a few different sizes than to verify that the unique requirements of each customer are met.

Similarly: it is easier to buy and sell tagged items performing according to a grade S05B than to list and verify all relevant performance requirements individually. As a result, a retailer’s list of requirements could be, for example:

  • items to be tagged with UHF RFID tags with C1G2 protocol
  • tagged items following GS1 Format & Symbol Placement for the Electronic Product Code guideline with C1G2 protocol
  • performance according to GS1 TIPP S05B grade
  • coded with SGTIN-96.

Now there is no longer a need to describe in detail which RFID tags to use and how to place them. Also, the suppliers and tag providers don’t need to guess what the use case description means from an RF performance point of view. TIPP translates complex system-level requirements into simplified component level pass/fail verification that any vendor can handle themselves.

The Voyantic Tagged-Item Grading System is 100% aligned with the GS1 Tagged-Item Performance Protocol (TIPP). The system automates TIPP grade validation and testing and provides results quickly and easily. It also enables TIPP grade audits to be performed by anyone. The Voyantic Tagged-Item Grading System is available as a complete turn-key setup.

Want to learn more? Read more about the GS1 TIPP guideline and the Voyantic Tagged-Item Grading System! Don’t forget to download our handy tool for evaluating read ranges with different RFID readers and tags with various TIPP grades below!

Download a Tool for Evaluating Read Ranges

Download a handy tool for evaluating read ranges with different RFID readers and tags with various TIPP grades. In the tool you can select a TIPP grade, input reader parameters, and see what kind of read range is expected from the system.

All blog posts