All blog posts

RFID Companies Should Stand United to Defend the RFID ETSI Frequencies – We Are Not Out of the Woods Yet

Jan 27, 2016

Listen up now Alien, Avery Dennison, GE, Honeywell, Intel, Impinj, NXP, Metro, Smartrac, SML, SATO, Tesco, and Zebra. You have a world of hurt coming in – the ETSI UHF RFID band might get cannibalized, and you cannot afford it. We are facing a serious situation where other technologies may cripple the already narrow RFID ETSI band. Read on to learn more about what you should do to defend your business.

AIM and RAIN are alert already, but more industry collaboration is needed to defend the ETSI RFID frequency band from other interested parties

RFID Is a Niche Technology Compared with WiFi

WiFi, NFC, and Bluetooth are all great technologies, with trustworthy standards and powerful industry alliances behind them. UHF RFID is a hobby in comparison. How many people on the planet have ever heard about RFID, or of the RAIN Alliance for that matter?

European RFID companies and potential end-users already lost one fight a long time ago. Just compare the ETSI 865 to 868 MHz band to the FCC 902-928 MHz ISM band. Some difference there – how many channels was that? Luckily we Europeans got away with 2 Watts ERP anyhow.

WiFi Stretching Down to Sub-gigahertz Area

Next up: the ETSI RFID band may be crippled by other technologies, at least if we ask the WiFi consortium. The WiFi consortium with its 600 member companies is completing its mission, doing the dance and WiFi HaLow is being lobbied for a sub-gigahertz band to operate in, potentially on top of ETSI RFID. To make the situation even more alarming, RFID companies are not presented well enough in the ETSI workgroups where the hard work is done. This is where industry collaboration would make a difference.

LBT Would Downgrade the Position of RFID

A simple resolution of sharing the band is to put Listen Before Talk (LBT) in place and use RFID only if there is an available channel. Well then, how would that modified sales pitch is going to sound like to your customers who are concerned about the RF reliability and availability? Do note there are only four ETSI RFID reader channels available!

“Yes, well, basically, there is no problem.”

In the worst case, the IoT of non-powered devices would be postponed in Europe by a few decades. All the previous pain related to Round Rock and the Japan 950 MHz band change are peanuts compared with this. The EU business covers a 30% share of the global RFID market – this would hurt us all bad. We may all be destined to walk the niche path unless we act and stand united.

RFID companies and associations cannot afford to bury their head in the sand when it comes to standardization

The New 915-921 MHz Band Is Needed and Proposed, but Not Approved Yet

The good news is that the new band 915-921 MHz in Europe may be opening up for RFID in the future. The proposal was already made in 2012 ETSI TR 102 649-2 V1.3.1 with an update ETSI EN 302 208-2 V2.1.1 in 2015. This is absolutely a positive issue with the work item REN/ERM-TG34-264 now in the “Final Draft for Approval” phase. How are You currently supporting this noble mission?

Get Proactive in Defending Your Business

AIM is alert already, and we have smart people engaged in this work. Still, more support is needed: join ETSI, join RAIN Alliance, support AIM, support GS1, and do assign your brightest to work on the ETSI ERM TG34. We are not out of the woods yet. Spare no Dollar, Euro, Yen, nor Yuan – Sharing the 866 MHz RFID band is not a concern of Europe alone; it could impact the global RFID business severely!

Do also make sure your representative is in the right room when it’s time to vote.

All blog posts
All blog posts

National UHF RFID Standards and RFID Performance

Sep 14, 2015

ISO 18000-63 (6C, EPC Class 1 Gen 2) has been by far the most used UHF RFID standard for several years. There have been some competing standards such as Tagidu, IP-X (tag-talks-only), and ISO18000-62 (6B), but they are nowadays rarely used in new applications. However, new RFID standards still emerge: for example, in Brazil, SINIAV has created a protocol aimed for vehicle tracking applications. In China, a new UHF standard, GB/T29768-2013, has been recently published.

Several tag manufacturers work with these new standards. Why do these national RFID standards exist? And what does it mean for performance testing?

Why Doesn’t Everyone Work with the Same Standard?

Since there is a well-working global standard, it would sound logical to use it for as many applications as possible. But there are some reasons for using something else as well. There may be national interests, or maybe there are special requirements that existing standards don’t cover well enough. For example, ISO 18000-63 was developed for quickly inventorying large quantities of items, and it may not be optimal for reading a single tag that is passing by at 180 km/h. Another challenge may be when the tag is in the windshield of a truck filled with other tagged items.

It should also be noted that the division to separate standards does not always have to be final. Commonly, new functionalities and exclusive features are absorbed into the global standard after they are validated.

What is the Difference Between the Different Standards?

When we talk about passive UHF RFID, we talk about readers that radiate between 860 to 960 MHz to power up remote tags, which in turn modulate their reflection to communicate back to the reader. That is common between all passive UHF RFID standards.

The difference is in how the readers and tags modulate the electromagnetic waves, and what kind of command and response sequences are used in the communication.

One standard might be optimized for quick inventorying while another might provide added security.

Besides, the complexity of the protocol affects the power consumption of the chip and, thus, the read range that can be acquired.

What do the National Standards Mean for Tag Manufacturers

So how should a tag manufacturer respond to a customer’s request to make a tag for a less widely used UHF RFID standard? Well, that depends on the opportunity. But there is nothing to be afraid of in the design process – it is no different from ISO 18000-63 tags. The Voyantic Tagformance system supports performance testing of the GB and SINIAV protocols (as well as older ISO 18000-62 and IP-X protocols).

With the Tagformance system, it is quick to characterize a UHF RFID tag regardless of the protocol: just choose which protocol is to be used in testing and then start the selected test. Results include (but are not limited to) information about the tag sensitivity, read range, tuning, and radiation pattern.

Application Developers

New RFID standards are often used in new application areas. With the Voyantic’s Field Engineer’s Kit, RFID tags can be tested within the application – for example, when attached to a vehicle. Vehicles are an example of a quite challenging environment for RFID because of their large metal parts and a variety of different plastic and glass types where tags are mounted. Thus, field test results are crucial.

Typical field tests aim to verify the read range. The Tagformance system can be used in evaluating what kind of read range can be achieved with different readers – without actually using the readers. Based on the tag measurements and the reader information input by the reader, the system shows the achievable read range, but also which tag or reader parameter is the bottleneck for system performance.

Download the Tagformance Pro Catalogue

Learn more about the Voyantic Tagformance® Pro Test Device! By combining RAIN RFID and NFC testing into one compact test device, our all-new Tagformance Pro is a true all-in-one tool for anyone either developing or using RFID technology.

All blog posts
All blog posts

The Convergence of UHF RFID and NFC

Aug 27, 2015

I saw my first combined UHF RFID-NFC apparel label at a trade show several years ago. I remember wondering what the reason for this combination was. After all, UHF RFID is primarily used in the business-to-business world of retail: supply chains, inventories, point-of-sale, etc. NFC, on the other hand, is used in the business-to-consumer interface: in retail, primarily brand enhancement. Could there be a reason to combine these two technologies?

The label sales guy politely explained to me that the reason for the combined label was precisely that, addressing both the B2B and B2C needs at once. Since the apparel supplier is already required to tag all his products with UHF RFID to accommodate the retailer’s inventorying needs, why not put in NFC as well?

The Cost

Of course, there is an added cost of adding NFC functionality to a label. But the supplier is already purchasing labels. There is a process in place for attaching the labels to the garments, and, hopefully, there is already some kind of quality assurance process. Ideally, adding NFC functionality costs little more than the additional cost of the NFC inlays.

The Benefit

But what do the apparel suppliers, or better the brand owners, get out of this? They get a chance to use the store as their marketing media. As a consumer taps a product label with an NFC enabled smartphone, they are taken to a dedicated web page where the brand owner can interact with them. The consumer may receive detailed information about the product, or they may be offered promotions for that specific product or other ones. The possibilities are endless. Besides, the brand owners gain information about who is interacting with the products and when each can be used for planning future marketing activities.

Latest Developments

The combined UHF RFID-NFC label that I saw years ago was based on separate UHF RFID and NFC inlays. But at the beginning of this year, EM Microelectronic launched a new product that could change this approach. The EM4423 is, according to their own words, “the world’s first RFID circuit featuring a UHF EPC Gen2V2 RF and an NFC Type 2 interface”. Several tag manufacturers are working with the chip, and we should expect to see new exciting products by the end of the year.

What Does the Convergence Mean for RFID Testing

Combining two antennas into a single tag adds a new layer of complexity. The UHF part should work with all RFID readers: handhelds, gates, POS, and so on. And NFC should be conveniently usable for consumers with their various smart devices. Optimizing tag design for both needs is more demanding than designing a single frequency tag. Also tagging the items must be reconsidered: tag placement must serve reliable inventory counting and allow convenient consumer access.

My company Voyantic’s focus has always been in performance and quality testing of RFID components, both UHF and HF/NFC. Lately, we have seen more and more companies developing and using UHF RFID and NFC technology side by side. To better serve our customers, we have been working the last couple of years to build a test system that would allow testing both of these technologies. Our goal has been to enable the rapid development of new, cost-efficient tag designs and to deploy them into a reliable system.

Tagformance Pro combines UHF RFID and NFC testing in one device

Tagformance Pro combines UHF and NFC tag testing into one device. The Tagformance Pro supports tag design, tag selection, and planning of tag placement – both UHF RFID for inventory and supply chain and NFC for the consumer interface. Tagformance Pro is a real all-in-one tool for anyone either developing or using RFID technology.

Download the Tagformance Pro Catalogue

Learn more about the Voyantic Tagformance® Pro Test Device! By combining RAIN RFID and NFC testing into one compact test device, our all-new Tagformance Pro is a true all-in-one tool for anyone either developing or using RFID technology.

All blog posts