Join us at CONNECTIONS SUMMIT 2022 in Helsinki, Finland   June 14-16, 2022 – Learn more and register here

May 15, 2020

A Major Upgrade for Aerospace RFID Testing

中文版 Chinese version

日本語版 Japanese version

During this COVID-19 pandemic, as most airplanes are stuck on the ground and several large airplane orders have been canceled, aerospace is probably not considered the hottest market for RAIN RFID. However, eventually, this situation will pass, and more airplanes will be built. When that happens, the aerospace industry will be more ready than ever to use RAIN RFID, due to recent standardization work.

Back in 2015, I wrote about the aerospace industry as the pioneers of RFID:

“The aerospace industry realized that they need standardization for flyable tags as early as 2006. That is when a group of experts in the field decided to develop a standard under SAE International. SAE AS5678, “Passive RFID Tags Intended for Aircraft Use”, was born … In addition to environmental testing, the standard also describes RF performance tests for the tags. The standard described a very professional and well repeatable measurement methodology. But even more interestingly, the standard divided tag performance into performance grades, somewhat similarly to what the GS1 TIPP standard would do for the retail industry in 2015.”

Fast forward to 2020, in February, SAE published the third version of the standard, AS5678B Passive RFID Tags Intended for Airborne Equipment Use. So, what’s new in the standard revision?

The changes are mostly related to how the performance grades are defined. In earlier versions of the standard, tags were graded based on their read range, determined from their sensitivity. And that makes perfect sense: In 2006, the sensitivity of RFID chips wasn’t that great, and read range was nearly always limited by power delivery to the tag. Nowadays, that is not always the case. As the sensitivity of tags has improved, in more and more cases the return link from the tag to the reader may limit read range. This is reflected in the new standard revision; in AS5678B, the grades are determined by both minimum read sensitivity and minimum backscatter.

To give an example, for a tag to be classified for Grade X, the sensitivity of the tag on a metal plate has to be better than -12 dBm, and its backscatter strength needs to be at least -23 dBm. That corresponds to an expected read range of 6 m. But that’s not all. Because airplanes are expected to cross borders, and radio regulations are different in different parts of the world, this performance is required throughout the global RAIN RFID range of 865 to 930 MHz.

There is one more new element in the standard. It is no longer sufficient for one individual tag to pass a grade – a statistical element is introduced. A total of 30 tags needs to be tested, and their performance variation must be below a level defined in the standard.

Overall, I am quite happy with the new standard revision. With the new backscatter criteria, it is well in line with the development of the industry. The backscatter is required to be quite strong which means that most readers are able to read tags that meet the criteria – and that is probably a good approach. In addition, the statistical test brings a hint of a quality aspect to the standard.

As a final thought, there is one thing that I find curious about AS5678. No one is openly advertising to offer test services according to this standard. Customers often contact me to ask for a service provider. Some tag makers are obviously either testing their tags themselves or having them tested somewhere. Probably most of them use an external lab for the environmental testing and do the RFID part with their own Tagformance system).

But wouldn’t it make sense to have a one-stop-shop for AS5678B testing?

If you think that a lab that you know should start offering these tests, please let us know. If they already have the environmental part, we would be happy to help with the RFID part.

Learn How to Test UHF RFID Tags in the Aerospace Industry

Download The Essential Guide for UHF Tag Testing in Aerospace

May 20, 2016

Passive RFID Sensors and Tags with a 100m Read Range A Geeks Report from RFID Journal Live! 2016

中文版 Chinese version

Two weeks ago was again the time of year when the RFID industry met at RFID Journal Live! in Orlando, Florida. The show is one of the main events of the year for Voyantic as well. But what were the hot topics this year?

As always, several new products were presented at the show. A significant trend for the last few years has been UHF RFID finding its way into mobile phones, first as add-on modules, but now also integrated into the phones. Another new product category was inventory robots that were seen roaming the aisles of the show. Mikel Choperena of Farsens writes about these trends in more detail in his trade show review.

Industry-wise, the airlines seem to be currently on the up in RFID adoption. Delta was one of the keynote speakers of the conference, and several companies were presenting SAE AS5678 certified tags meant to be used in airplanes. But other industries, such as manufacturing, healthcare RFID, and retail were also well represented.

Passive Sensors Steal the Spotlight

After last year’s show, I wrote that one of the hot topics was (link: http://voyantic.com/blog/posts/is-now-the-time-for-passive-rfid-sensing text: passive RFID sensing popup:yes), and noted that sensing occupied four of the ten Best New Product nominations.

It looks like sensing picked up where it left off last year.

This year’s award was shared between two innovative sensing products:

  • The first winner was SMARTRAC Technologies, for its Sensor Tadpole, a passive UHF sensor that can detect the presence of moisture. The sensor tag has been used by automobile manufacturers for ensuring that the cars leave the factory watertight.
  • The other winner was Phase IV Engineering for its RFID Sensor Reader, which is designed to collect accurate data from passive RFID sensor tags. Think of it as the missing piece that links passive RFID sensors to industrials PLCs, converting sensor readings from a tag’s memory to industry standard voltage or current levels. Keep your eye on this company!

Bubbling Under in the Academic Scene

RFID Journal Live! was co-located with several smaller conferences, one of them the IEEE International Conference on RFID, “the premier conference for exchanging all technical research in RFID”. My colleagues were kind enough to relieve me from booth duty, so I had a chance to attend the conference, and spend some time with my fellow geeks.

This year was the 10th occurrence of IEEE RFID, and I can proudly say that I have participated in pretty much all of them in some role: in the Technical Program Committee, as a session chair, or as an invited speaker. The conference covers different aspects of RFID research; this year the largest amount of presentations fell under the categories of

  • antennas & propagation
  • circuits
  • devices & readers
  • protocols & security and
  • energy harvesting & wireless power.

For me, the most interesting talk was given by Dr. Greg Durgin of Georgia Tech. He received the best paper award for his paper titled “RF Thermoelectric Generation for Passive RFID”. The paper proposes a new way to power passive tags based on thermoelectric generation instead of traditional diode rectification. To put it in perspective, Alien Technology presented their new Higgs-EC tag IC at the show, reported to have best in class read sensitivity of -22.5 dBm with a dipole antenna. Dr. Durgin’s proposal could bring sensitivity down to -34 dBm, allowing read ranges of up to 100 m.

Think about all the applications that a passive 100 m read range could allow.

RFID has definitely not seen its limits yet!

Nov 06, 2015

The Pioneers of UHF RFID: The Aerospace Industry

中文版 Chinese version

Retail RFID seems to get the most limelight in the RFID industry at the moment. And that is not surprising because of its huge tag volumes and growth rates. But many other sectors are benefiting from RFID use as well. One of my personal favorites is the aerospace industry.

The aerospace industry has been one of the pioneers in UHF RFID use

The most visible aerospace company in the RFID space has been Airbus. Their announcement, at the beginning of this year, to ask their supply base to tag all traceable items with passive RFID shows that they are serious. But also Boeing and Embraer come across regularly in RFID related news. To serve this industry, an ecosystem of RFID technology providers has emerged. Companies such as Fujitsu, Maintag, Tego, OAT Systems, and Brady, to name a few, have a special focus in aerospace RFID. Besides, the ecosystem has generated business opportunities for the supporting industry, see, for example, the Stanley Black & Decker success story.

What is Required from RFID in Aerospace?

So why are some RFID companies specializing in the aerospace industry? Can’t we just buy a roll of RFID labels and start tagging airplane parts? Well, it is not quite as simple as that. Several aspects set aerospace RFID, apart from many other application areas:

  1. Large memory required: The aerospace industry requires that a lot of information (birth records, maintenance records, etc.) is stored directly into the tag. They don’t want to rely on a connection to an external database which is usually used in retail RFID.
  2. Valuable items: The tagged items are of high value and are often used for ten years and more. As a result, tag durability is more important a driver than tag cost.
  3. Harsh conditions: Tags in and out of an airplane need to endure vibration, significant variations in temperature, humidity, and pressure, and many other conditions unfamiliar to retail applications.
  4. Global functionality: As airplanes frequently cross country borders and oceans, the RFID tags need to be readable around the world. As a result, the tags must be designed to be wideband.
  5. Less sensitive tag ICs: Due to their larger memory content and possible special functionalities, the tag ICs used in aerospace typically need more power. As a result, many applications are limited to read ranges of 15 cm to 3 meters.

A Need for Standards

The aerospace industry realized that they need standardization for flyable tags as early as 2006. That is when a group of experts in the field decided to develop a standard under SAE International. SAE AS5678, “Passive RFID Tags Intended for Aircraft Use” was born. The standard includes a broad set of different environmental tests to make sure that a tag would endure the harsh conditions of a flying airplane. Sun APT Test Center was the first lab to start certifying tags according to the standard.

In addition to environmental testing, the standard also describes RF performance tests for the tags. The standard described a very professional and well repeatable measurement methodology. But even more interestingly, the standard divided tag performance into performance grades, somewhat similar to what the GS1 TIPP standard would do for the retail industry in 2015.

AS5678 was truly ahead of its time.

As a result, an airplane manufacturer could simply require a grade B tag to be used by its suppliers without having to specify the tag model or detailed performance parameters.

AS5678 performance tests are typically performed in a small anechoic chamber

Now, in 2015, SAE is revising the AS5678 standard to reflect the new information gained during the years. I have been a member of the team, revising the standard as well. The changes, however, are not very large, which well reflects the quality of the first standard version.

Specific RFID Testing Needs of the Aerospace Industry

The special requirements of the aerospace industry for RFID lead to some specific testing needs:

  1. Measuring tag performance: Because of the large memory contents, wide bandwidth, and rugged design, aerospace tags may have limited read ranges. The AS5678 test methodology can be used to determine the acquired read range and the matching performance grade.
  2. Verifying tag bandwidth: Since a wide bandwidth is required, the performance of the tag needs to be tested typically throughout the 860-960 MHz frequency range.
  3. Environmental tests: AS55678 describes a large set of environmental conditions that the tag needs to endure. The performance of the tag should not degrade during the tests.
  4. Memory testing: The memory of an aerospace tag is organized differently compared to a typical label. As a result, there is a need to have good visibility to the tag memory contents.

My company Voyantic has delivered test and measurement systems for both end-users and technology providers in the aerospace RFID industry. The systems promote design and manufacturing excellence, as well as fluent technical dialogue between pioneering companies within the industry.

If you are interested to learn more, please download our application note below or contact us, and let’s talk more!

Learn How to Test UHF RFID Tags in the Aerospace Industry

Download The Essential Guide for UHF Tag Testing in Aerospace